
MATH 213 Notes

Spring 2015

Gabriel Wong
me@gabrielwong.net

From lectures by David Wang



Contents

1 Method of Undetermined Coefficients 3

2 Second Order DE 3

2.1 Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Roots are Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Complex Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Higher Order ODEs 4

3.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Nonhomogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Harmonic Oscillators 6

4.1 Homogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.1 Case 1, Overdamped . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.2 Case 2, Critical Damping . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.3 Case 3, Underdamped . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Nonhomogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.1 Beating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.2 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Laplace Transform 8

5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Table of Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3 Derivation of Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 Existance of Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.5 Inverse Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.6 Application to ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.7 Shifting Theorems and the Heaviside Function . . . . . . . . . . . . . . . . . 15

5.7.1 s-Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.7.2 Time Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



5.8 Periodic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.9 Integration of f(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.10 Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.11 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.11.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.12 Simultaneous Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 31

6 Fourier Series 32

6.1 Useful Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Complex Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 Amplitude Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Fourier Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.6.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.6.2 Relationship with Laplace Transform . . . . . . . . . . . . . . . . . . 46

7 Partial Differential Equations 46

7.1 Classification of Second Order Linear PDEs . . . . . . . . . . . . . . . . . . 48

7.2 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Laplace Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



1 Method of Undetermined Coefficients

This method is used to guess the form of the particular solution to a nonhomogeneous
solution.

Function of x Form of y
ekx kekx

xn k1x
n + k2x

n−1 + ...+ kn−1x+ kn
cosωx, sinωx A cosωx+B sinωx

ekx cosωx, ekx sinωx ex(A cosωx+B sinωx)

If what we have is already in the solution, multiply it by x.

2 Second Order DE

2.1 Solving

Consider the second order homogenous case y′′ + ay′ + by = 0. Assume a solution is in the
form y = eλx. Then derivatives are y′ = λeλx and y′′ = λ2eλx. So we obtain

(λ2 + aλ+ b)eλx = 0

Example 2.1

y′′ + y′ − 2y = 0

(λ2 + λ− 2) = 0

(λ+ 2)(λ− 1) = 0

So λ1 = −2, λ2 = 1. Therefore y = c1e
λ1x + c2e

λ2x = c1e
−2x + c2e

x.

2.2 Roots are Equal

Consider if λ1,2 = −a
2
. So a2 − 4b = 0 meaning that y′′ + ay′ + a2

4
y = 0. We know that

one root is a solution so y1 = e−
a
2
x. Let’s try y2 = xe−

a
2
x. Then y′2 = e−

a
2
x + −a

2
xe−

a
2
x,

y′′2 = −ae−a2x + −a2
4
xe−

a
2
x. It can be shown that this is a solution.

2.3 Complex Roots

Complex roots are always conjugate. Also recall eix = cosx+ i sinx.
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Let λ1,2 = 1
2
(−a±

√
a2 − 4b) = α± iω where α = −a

2
, ω =

√
4b−a2

2
.

y = c′1y1 + c′2y2

= c′1e
(α+jω)x + c′2e

(α−jω)x

= c′1e
αxejωx + c′2e

αxe−jωx

We can rewrite this as y = (c′1 + c′2)eαx cosωx+ j(c′1 + c′2)eαx sinωx.

Let c′1 = c1+jc2
2

, c′2 = c1−jc2
2

. Since ejωx = cosωx+ i sinωx and e−jωx = cosωx− i sinωx.

y = c1e
αx cosωx+ c2e

αx sinωx

Example 2.2 y′′ + 2y′ + 2y = 0

So λ = −1± j, α = −1, ω = 1

y = c1e
−x cosx+ c2e

−x sinx

3 Higher Order ODEs

This method will work for higher order ODEs with constant coefficients: y[n] + an−1y
[n−1] +

...a1y
′ + a0y = 0.

1. Find the characteristic equation (y = eλx).

λ+an−1λ
n−1 + ...+ a1λ+ a0 = 0

2. Solve for the roots (ie. using numerical solver)

3. The solution is a sum of independent solutions of the form

(a) Real roots (not repeated)
yi = eλix

(b) Complex roots (always in conjugate pairs)

yi,i+1 = e(α±iω)x

= eαx(c1 sinωx+ c1 cosωx)

(c) Real repeated roots of order m

yi,i+1,...,i+m−1 = (c1 + c2x+ ...+ cmx
m−1)eλx

(d) Repeated complex roots of order m

yi,i+1,...,i+2m−1 = eαx(c1 sinωx+ c2 cosωx)(d1 + d2x+ ...dmx
m−1)

Example 3.1 y[6] − 4y[5] + 14y[4] + 32y[3] − 79y′′ + 260y′ + 676y = 0

The roots are λ = −2,−2, 2± 3i, 2± 3i.

y = (c1 + c2x)e−2x + e2x(c3 sin 3x+ c4 cos 3x)(c5 + c6x)
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3.1 Stability

We consister a system to be stable if the solution y(t) to the ODE is bounded for any initial
condition. That is, there exists a constant M such that |y(t)| ≤M,∀t ≥ 0. We consider the
system to be unstable if the solution is bounded.

We can look at the roots of the characteristic polynomial to check if the solution is bounded.
We need for all roots, Re(λ) < 0 or Re(λ) = 0 if not repeated.

Example 3.2 Is y[6] − 4y[5] + 14y[4] + 32y[3] − 79y′′ + 260y′ + 676y = 0 stable, with roots
λ = −2,−2, 2± 3i?

It is not stable due to 2± 3i root.

3.2 Nonhomogeneous Case

Recall the method of undetermined coefficients.

Example 3.3 y′′ + 4y = 8x2

Look at the homogeneous case y′′ + 4y = 0. The characteristic equation is λ2 + 4 = 0 so
λ = ±2i. Then the homogeneous solution is yh = c1 sin 2x+ c2 cos 2x.

So we try yp = k2x
2 + k1x + k0. Then y′p = 2k2x + k1 and y′′p = 2k2. Substituting into the

differential equation, 2k2 + 4(k2x
2 + k1x+ k0) = 8x2. Solving yields k0 = −1, k1 = 0, k2 = 2.

Then y = c1 sin 2x+ c2 cos 2x+ 2x2 − 1.

Example 3.4 y′′ − 3y′ + 2y = ex

Look at homogeneous case. The characteristic equation is λ2 − 3λ + 2 = 0 so λ1,2 = 1, 2.
Then yh = c1e

x + c2e
2x.

We can’t use yp = kex since it’s in the equation so we’ll try yp = kxex, y′p = k(ex + xex),
y′′p = k(2ex + xex). Substituting back, we get k = −1. So y = c1e

x + c2e
2x − xex.

Example 3.5 y′′ − 2y′ + y = ex + x, y(0) = 1, y′(0) = 0

Homogeneous equation is λ2−2λ+1 = 0. So the homogeneous solution is yh = c1e
x+ c2xe

x.
Now we look for the particular solution. Usually we try yp = k1e

x + k2x+ k3, but k1e
x and

k1xe
x is part of the homogeneous solution so we try yp = k1x

2ex + k2x+ k3 instead.

Solving for constants, we get yp = 1
2
x2ex + x + 2. So y = c1e

x + c2xe
x + x + 2 + 1

2
x2ex. We

must solve the intial value problem using the particular solution.
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4 Harmonic Oscillators

Differential equation of a spring is mẍ + cẋ + kx = F and for an electrical system, it is
Ld2i
dt2

+R di
dt

+ 1
C
i = dE

dt
. These are both in the form

y′′ + 2ξωny
′ + ω2

ny = f(t)ω2
n

where ωn = natural frequency and ξ = damping ratio. Notice that both are non-negative.

Figure 1: Mass, spring, dampener system

4.1 Homogeneous Case

Then the characteristic equation for the homogeneous case is λ2 + 2ξωnλ + ω2
n = 0. So

λ1,2 = −ξωn ± ωn
√
ξ2 − 1. We also have ξ = c

2
√
mk

and ωn =
√

k
m

.

The real part is always negative since
√
ξ2 − 1 < ξ. So our solution is a negative exponential,

oscillating if there are complex roots. This makes sense physically.

4.1.1 Case 1, Overdamped

In this case, ξ > 1. We get two real negative roots.

yh = c1e
λ1t + c2e

λ2t

We call this overdamped.
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Figure 2: Overdamping, critical damping and underdamping

4.1.2 Case 2, Critical Damping

This is when ξ = 1. We then have repeated roots λ1,2 = −ξωn.

yh = c1e
−ξωnt + c2te

−ξωnt

This approaches 0 the fastest and is called critical damping.

4.1.3 Case 3, Underdamped

We have ξ < 1. Then we have two complex roots with a negative real part: λ1,2 = −ξωn ±
ωni
√

1− ξ.
yh = e−ξωnt(A cos(ωt) +B sin(ωt))

where ω = ωn
√

1− ξ2

4.2 Nonhomogeneous Case

Equations are in the form ÿ + 2ξωnẏ + ω2
ny = f(t)ω2

n. We need to look at the three cases:
overdamped, critically damped and underdamped. All those cases were stable for the homo-
geneous case.

Suppose f(t) = Fn cos(ωt). Using the method of undetermined coefficients, the form of the
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solution is y(t) = yh(t) + A cosωt+B sinωt. Substituting and simplifying, we get

y = yh +
(ω2

n − ω2)(ω2
nF0)

(ω2
n − ω2)2 + (2ξωωn)2︸ ︷︷ ︸

u

cosωt+
2ξωnω(ω2

nF0)

(ω2
n − ω2)2 + (2ξωωn)2︸ ︷︷ ︸

v

sinωt

︸ ︷︷ ︸
yp

We want to transform the sin and cos into just one cos in the form yp = E cos(ωt+ Φ).

yp = E cos(ωt+ Φ)

= E cos Φ cosωt− E sin Φ sinωt

Then u = E cos Φ and v = E sin Φ so E =
√
u2 + v2 and Φ = tan−1 −v

u
.

The particular solution is oscillating at the same frequency as the input but with different
amplitudes and a phase shift. Now consider when there is no damping:

y = A cosωnt+B sinωnt+
ω2
nF0

ω2
n − ω2

cosωt

4.2.1 Beating

Suppose ωn is close to ω and y(0) = 0 and ẏ(0) = 0. Then we get

y(t) = 2
F0ω

2
n

ω2
n − ω2

sin(
ωn − ω

2
t)︸ ︷︷ ︸

envelope

sin(
ωn + ω

2
t)︸ ︷︷ ︸

same frequency as f(t)

4.2.2 Resonance

If ωn = ω then we can’t use this equation since the forcing function is the same form as yh.
We have to try yp = t(A cosωnt+B sinωnt). And that blows up linearly.

5 Laplace Transform

5.1 Definition

Let f(t) be defined for all t ≥ 0. Then

L{f(t)} = F (s) =

∫ ∞
0

e−stf(t)dt
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is called the Laplace transform of f(t) for all s such that this improper integral exists. Also
s is a complex number.

The inverse is denoted as L−1{F (s)} = f(t).

5.2 Table of Transforms

f(t), t ≥ 0 F (s)

1
1

s

t
1

s2

t2
2

s3

tn
n!

sn+1

eat
1

s− a
cos at

s

s2 + a2

sin at
a

s2 + a2

5.3 Derivation of Transforms

Proof 5.1 Consider the Heaviside function. For t ≥ 0, f(t) = 1.

F (s) =

∫ ∞
0

e−st(−1)dt

= lim
T→∞

(
−1

s
e−st

) ∣∣∣T
0

= lim
T→∞

[
−1

s
e−st − −1

s

]
=

1

s
(if Re(s) > 0 then this converges)

Then for the Heaviside function, F (s) = 1
s
. The region of convergence is Re(s) > 0 because

otherwise the limit is not defined.
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Proof 5.2 Consider f(t) = eat, t ≥ 0.

F (s) =

∫ ∞
0

e−steatdt

= lim
T→∞

∫ T

0

e−(s−a)tdt

= lim
T→∞

1

a− s
e−(s−a)t

∣∣∣T
0

If Re(s− a) > 0, then as T →∞ the first term goes to zero. Then

F (s) =
1

s− a
for Re(s) > a.

We can keep doing this for other functions to generate tables.

The Laplace transform is linear (ie. L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)})

Proof 5.3

L{af(t) + bg(t)} =

∫ ∞
0

e−st(af(t) + bg(t))dt

= a

∫ ∞
0

e−stf(t)dt+ b

∫ ∞
0

e−stg(t)dt

= aF (s) + bG(s)

Note that the region of convergence is the intersection of the region of convergence of the
original functions.

The inverse Laplace transform is also linear.

L−1{aF (s) + bG(s)} = aL−1{F (s)}+ bL−1{G(s)}

Example 5.1 f(t) = cosh at

F (s) = L{cosh at}

= L{1

2
eat +

1

2
e−at}

=
1

2
L{eat}+

1

2
L{e−at}

=
1

2

1

s− a
+

1

2

1

s+ a

=
s

s2 − a2

The region of convergence is Re(s) > a and Re(s) > −a. So we want Re(s) > a.
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Example 5.2 F (s) = 1
(s−1)(s−2)

.

F (s) = L−1

{
1

s− 2
− 1

s− 1

}
= L−1

{
1

s− 2

}
− L−1

{
1

s− 1

}
= e2t − et

Proof 5.4

L{tn} =
n!

sn+1

We showed earlier that this holds for n = 0 with the step function.

Assume for some n that L{tn} = n!
sn+1 .

L{tn+1} =

∫ ∞
0

e−sttn+1dt (integrate by parts: v = tn+1, du = e−stdt)

= −1

s
e−sttn+1

∣∣∣∞
0︸ ︷︷ ︸

0 if Re(s)>0

+
n+ 1

s

∫ ∞
0

e−sttndt︸ ︷︷ ︸
L{tn}

= 0 +
n+ 1

s

n!

sn+1

=
(n+ 1)!

sn+2

So the formula is true by induction. �

Proof 5.5
L{sinωt} =

ω

s2 + ω2

Remember that s is in the complex domain.

L{sinωt} = L
{
eiωt − e−iωt

2i

}
=

1

2i

(
L{eiωt} − L{e−iωt}

)
=

1

2i

(
1

s− iω
− 1

s+ iω

)
=

1

2i

(
1

s− iω
s+ iω

s+ iω
− 1

s+ iω

s− iω
s− iω

)
=

1

2i

(
s+ iω

s2 + ω2
− s− iω
s+ ω2

)
=

ω

s2 + ω2
�
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5.4 Existance of Laplace Transform

Not all f(t) have a Laplace transform. We need the integrand e−stf(t) to go to zero suffi-
ciently fast.

For example, e−sttn, e−steωt can be made to decay sufficiently fast. But e−stet
2

will not
converge for any s.

f(t) does not need to be continuous. Assume f(t) is piecewise continuous. That is, it is
continuous on all but a finite number of points and at those points, it has finite left and
right-sided limits (only finite jumps).

Theorem 5.1 Let f(t) be a function that is piecewise continuous on every finite interval
for t > 0 and |f(t)| ≤ Meat for some a. Then the Laplace transform exists for Re{s} > a
and is unique except at the discontinuities.

Example 5.3 L
{

1√
t

}
. 1√

t
is not continuous at t = 0 but is continuous everywhere else for

t > 0 so the Laplace transform exists.

L
{
et

2
}

does not exist since there does not exist a such that |f(t)| ≤Meat.

Example 5.4 What is the Laplace transform of

f(t) =

{
t 0 ≤ t < 1

0 t ≥ 1

L{f(t)} =

∫ ∞
0

e−stf(t)dt

=

∫ 1

0

e−sttdt (since f(t) = 0 for t ≥ 0)

= −1

s
e−stt

∣∣∣1
0

+
1

s

∫ 1

0

e−stdt (integration by parts)

= − 1

ses
+

1

s

(
−1

s
e−st

∣∣∣1
0

)
= − 1

ses
− 1

s2es
+

1

s2

=
1

s2
− e−s

(
1

s
+

1

s2

)
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5.5 Inverse Laplace

L−1{F (s)} =
1

2πi

∫ α+i∞

α−i∞
F (s)estds

This is an integration in the complex plane. The α depends on the region of convergence.

If F (s) is rational, we can use tables and partial fraction expansions.

Example 5.5

F (s) =
3s2 + s− 7

s3 − 7s2

=
3

s− 7
+

1

s2

f(t) = 3e7t + t, t ≥ 0

5.6 Application to ODEs

We need to figure out what happens when we differentiate a function.

Theorem 5.2 Suppose f(t) is continuous for t ≥ 0 and satisfies the conditions to have a

Laplace transform. As well, suppose df(t)
dt

is piecewise continuous on every finite interval in

t ≥ 0. Then, there exists an α such that L
{
df(t)
dt

}
exists for Re{s} > α and

L
{
df(t)

dt

}
= sL{f(t)} − f(0)

where f(0) is the initial value.

Proof 5.6

L
{
df

dt

}
=

∫ ∞
0

e−stf ′(t)dt

= e−st︸︷︷︸
u

f(t)︸︷︷︸
v

∣∣∣∞
0
−
∫ ∞

0

f(t)(−s)e−stdt

= −f(0) + s

∫ ∞
0

f(t)e−stdt

= −f(0) + sL{f(t)}

�

Although not shown, we should keep track of the region of convergence.
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We can apply this twice to get

L
{
d2f(t)

dt2

}
= sL

{
df(t)

dt

}
− f ′(0)

= s2 L{f(t)} − sf(0)− f ′(0)

Or generally,

L
{
dfn(t)

dtn

}
= sn L{f(t)} − sn−1f(0)− sn−2f ′(0)− ...− f [n−1](0)

We can now solve ODEs with initial values using algebraic techniques.

Example 5.6 ẋ = x, x(0) = 1

L{ẋ} = L{x}
sX(s)− x(0) = X(s)

X(s) =
1

s− x(0)

X(s) =
1

s− 1

x(t) = et, t ≥ 0 (taking the inverse Laplace)

Example 5.7 ÿ = 1, y(0) = 0, ẏ(0) = 1

L{ÿ} = L{1}

s2Y (s)− sy(0)− y′(0) =
1

s

s2Y (s) =
1

s
+ 1

Y (s) =
1

s2
+

1

s3

y(t) = t+
t2

2
, t ≥ 0

Example 5.8 Find L{cosωt}.
If f = sinωt, f(0) = 0, f ′ = ω cosωt.

14



L{f ′} = sL{f} − f(0)

L{ω cosωt} = s
ω

s2 + ω2
− 0

L{cosωt} =
s

s2 + ω2

Example 5.9 ÿ + 9y = 1, y(0) = 0, ẏ(0) = 1

L{ÿ + 9y} = L{1}

s2 L{y} − sy(0)− ẏ(0) + 9L{y} =
1

s

L{y}(s2 + 9) =
1

s
+ sy(0) + ẏ(0)

L{y} =
1
s

+ 1

s2 + 9

L{y} =
1

s(s2 + 9)
+

1

s2 + 9

L{y} =
1

9s
− 1

9

s

s2 + 32
+

1

3

3

s2 + 32

L{y} =
1

9
− 1

9
cos 3t+

1

3
sin 3t

5.7 Shifting Theorems and the Heaviside Function

5.7.1 s-Shifting

Theorem 5.3 If f(t) has a transform F (s) where s > α, then eatf(t) has the transform
F (s− a) where s− a > α.

L{eatf(t)} = F (s− a)

Proof 5.7

F (s− a) =

∫ ∞
0

e−(s−a)f(t)dt

=

∫ ∞
0

e−st(eatf(t))dt

= L{eatf(t)}

�
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We can now use partial fraction expansion of all rational functions in s using our previous
table.

f(t), t ≥ 0 F (s)

eattn
n!

(s− a)n+1

eat cosωt
s− a

(s− a)2 + ω2

eat sinωt
ω

(s− a)2 + ω2

Example 5.10

F (s) =
1

s2(s2 + 4s+ 40)

=
1

s2 ((s+ 2)2 + 62)

=
A

s
+
B

s2
+

C(s+ 2)

(s+ 2)2 + 62
+

6D

(s+ 2)2 + 62︸ ︷︷ ︸
form where we can directly take inverse

f(t) = L−1

{
− 1

400
+

1

40s2
+

1

400

s+ 2

(s+ 2)2 + 62
− 1

300

6

(s+ 2)2 + 62

}
= − 1

400
+

1

40
t+

1

400
e−2t cos 6t− 1

300
e−2t sin 6t

Or solve using complex domain

Example 5.11

F (s) =
1

s2(s2 + 4s+ 40)

=
A

s
+
B

s2
+

C

s+ 2 + 6i
+

D

s+ 2− 6i

f(t) = A+Bt+ Ce(−2−6i)t +De(−2+6i)t

C and D will be a complex conjugate pair.

Example 5.12 ÿ + 2ẏ + 5y = 0, y(0) = 2, ẏ(0) = −4
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Taking Laplace,

s2Y (s)− sy(0)− ẏ(0) + 2(sY (s)− y(0)) + 5Y (s) = 0

Y (s) =
2s

s2 + 2x+ 5

=
2s

(s+ 1)2 + 22

=
A(s+ 1)

(s+ 1)2 + 22
+

2B

(s+ 1)2 + 22

Solving gives A = 2, B = −1.

Y (s) =
2(s+ 1)

(s+ 1)2 + 22
− 2

(s+ 1)2 + 22

y(t) = 2e−t cos 2t− e−t sin 2t

Example 5.13 ÿ − 2ẏ + y = et + t, y(0) = 1, ẏ(0) = 0

1

s− 1
+

1

s2
= s2Y (s)− sy(0)− y′(0)− 2(sY (s) + y(0)) + Y (s)

Y (s) =
s− 2

(s− 1)2
+

1

(s− 1)3︸ ︷︷ ︸
L−1{ 1

s3
}= t2

2

+
1

s2(s− 1)2

=

(
1

s− 1
− 1

(s− 1)2

)
+
ett2

2
+

(
1

(s− 1)2
− 2

s− 1
+

1

s2
+ 2

1

s

)
= et − tet +

ett2

2
+ tet − 2et + t+ 2

= −et + t+ 2 +
t2et

2

Example 5.14 ÿ + 6ẏ + 13y = 1, y(0) = 0, ẏ(0) = 0

s2Y (s)− sy(0)− ẏ(0) + 6(sY (s)− y(0)) + 13Y (s) =
1

s

(s2 + 6s+ 13)Y (s) =
1

s

Y (s) =
1

s(s2 + 6s+ 13)

Y (s) =
1

s((s+ 3)2 + 4)

Y (s) =
A

s
+

B(s+ 3)

(s+ 3)2 + 22
+

2C

(s+ 3)2 + 22

Y (s) = A+Be−3t cos 2t+ Ce−3t sin 2t

17



5.7.2 Time Shifting

Define the Heaviside Step Function u(t− a) as

u(t− a) =

{
0 t < a

1 t ≥ a

Theorem 5.4 A delayed function

f̃(t) =

{
0 t < a

f(t− a) t ≥ a

has Laplace transform e−as L{f(t)}.
Equivalently,

L{f(t− a)u(t− a)} = e−asF (s)

Proof 5.8

e−asF (s) = e−as
∫ ∞

0

e−sτf(τ)dτ

=

∫ ∞
0

e−s(τ+a)f(τ)dτ

=

∫ ∞
a

e−stf(t− a)dt (with t = τ + a)

=

∫ ∞
0

e−stu(t− a)f(t− a)dt

Example 5.15 Show L{u(t− a)} = e−as

s

Since L{u(t)} = 1
s

then L{u(t− a)} = e−as

s
.

Example 5.16 Find L−1{ e−3s

s3
}.

L−1{ 1

s3
} =

t2

2

L−1{e
−3s

s3
} =

(t− 3)2

2
u(t− 3)

Example 5.17 Find the transform of

f(t) =


2 0 ≤ t < π

0 π ≤ t < 2π

sin t t ≥ 2π

18



We’ll write f(t) in terms of Heaviside.

From 0 to π, f(t) = 2u(t)
From 0 to 2π, f(t) = 2u(t)− 2u(t− π)

For all t,

f(t) = 2u(t)− 2u(t− π) + u(t− 2π) sin(t− 2π)︸ ︷︷ ︸
L{sin t}= 1

s2+1

L{f(t)} =
2

s
− e−πs2

s
+ e−2πs 1

s2 + 1

Notice that we have to shift sin t by 2π to get it into a form where we can apply the theorem.

Example 5.18

F (s) =
2

s2
− 2

e−2s

s2
− 4

e−2s

s
+ s

e−πs

s2 − 1

f(t) = 2t− 2(t− 2)u(t− 2)− 4u(t− 2) + cos(t− π)u(t− π)

Example 5.19 ÿ − 4ẏ + 4y = t+ 2u(t− 3), y(0) = 0, ẏ(0) = 0

ÿ − 4ẏ + 4y = t+ 2u(t− 3)

s2Y (s)− sy(0)− ẏ(0)− 4(sY (s)− y(0)) + 4Y (s) =
1

s2
+ 2

e−3s

s

(s2 − 4s+ 4)Y (s) =
1

s2
+ 2

e−3s

s

(s− 2)2Y (s) =
1

s2
+ 2

e−3s

s

Y (s) =
1

s2(s− 2)2
+

2e−3s

s(s− 2)2

After partial fraction expansion,

Y (s) =

(
1

4s
+

1

4s2
− 1

4(s− 2)
+

1

4(s− 2)2

)
+ e−3s

(
1

2s
− 1

2(s− 2)
+

1

(s− 2)2

)
=

1

4
+
t

4
− e2t

4
+
te2t

4
+
u(t− 3)

2
− e2(t−3)u(t− 3)

2
+ (t− 3)e2(t−3)u(t− 3)

Example 5.20
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f(t) = 2− 2u(t− 2) + (t− 1)u(t− 1)− (t− 2)u(t− 2)− 1u(t− 2) + sin(t− 2)u(t− 2)

=
2

s
− 2e−s

s
+
e−s

s2
− e−2s

s2
− e−2s

s
+

e−2s

s2 + 1

Example 5.21 L{u(t− 1)t}

f(t) = tu(t− 1)

= (t− 1)u(t− 1) + u(t− 1)

=
e−s

s2
+
e−s

s

5.8 Periodic Signals

Theorem 5.5 If f is periodic with period T and piece-wise continuous over this period, then

L{f(t)} =
1

1− e−sT

∫ T

0

f(t)e−stdt︸ ︷︷ ︸
Laplace of one period

Periodic means f(t) = f(t+ T ).

Note: if we take the Laplace transform over one period, we must make sure that the function
is equal to 0 for t > T .

20



Proof 5.9

F (s) =

∫ ∞
0

e−stf(t)dt

=

∫ T

0

e−stf(t)dt+

∫ 2T

T

e−stf(t)dt︸ ︷︷ ︸
t=τ+T

+

∫ 3T

2T

e−stf(t)dt︸ ︷︷ ︸
t=τ+2T

+...

=

∫ T

0

e−stf(t)dt+

∫ T

0

e−s(τ+T ) f(τ + T )︸ ︷︷ ︸
f(τ)

dτ +

∫ T

0

e−s(τ+2T ) f(τ + 2T )︸ ︷︷ ︸
f(τ)

dτ + ...

=

∫ T

0

e−stf(t)dt+ e−st
∫ T

0

e−stf(t)dt+ e−2st

∫ T

0

e−stf(t)dt+ ...

= (1 + e−st + e−2st + ...)

∫ T

0

e−stf(t)dt

=
1

1− e−st

∫ T

0

e−stf(t)dt (geometric series with |e−st| < 1)

Example 5.22

Looking at one period,

fT (t) = k − 2k u(t− T

2
) + k u(t− T )

Then the Laplace transform for one period is

L{fT (t)} =
k

s
− 2k

s
e−

T
w
s +

k

s
e−Ts

2

Using the previous theorem,

L{f(t)} =
1

1− esT

(
k

s
− 2k

s
e−

T
2
s +

k

s
e−Ts

)
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5.9 Integration of f(t)

Theorem 5.6 If f(t) is piecewise-continuous and satisfies |f(t)| ≤Meλt, then

L
{∫ t

0

f(τ)dτ

}
=

1

s
L{f(t)}

Proof 5.10 One can show that if |f(t)| ≤ Meλt then
∫ t

0
f(τ)dτ will have a Laplace trans-

form.

Let g(t) =
∫ t

0
f(τ)dτ then f(t) = dg(t)

dt
.

Now one can show that |g(t)| ≤ Meλt

λ
which means there is a Laplace transform.

L{f(t)} = L{g′(t)}

L{f(t)} = sL{g(t)} −���*
0

g(0)

L{g(t)} =
1

s
L{f(t)}

5.10 Control Systems

Assume our system initially has zero initial conditions. The forcing function u(t) is considered
the input to the system and the output is the variable y(t) that we are trying to solve for.

a0y
[n](t) + ...any(t)︸ ︷︷ ︸

outputs

= b0u
[n−1](t) + ...+ bn−1u(t)︸ ︷︷ ︸

inputs

Taking derivatives with zero initial conditions are essentially multiplication by s. Then
taking the Laplace transform gives

Y (s)(a0s
n + ...+ an) = U(s)(b0s

n−1 + ...+ bn−1)

Y (s) = G(s)U(s)

where

G(s) =
b0s

n−1 + ...+ bn−2s+ bn−1

a0sn + ...+ an−1s+ an

G(s) is called the transfer function.

This is useful for block diagrams, for example mass spring damper system with a controller.
We want to change the damping characteristics to achieve critical damping.
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The equations are ÿ + 2ξωnẏ + ω2
ny = ω2

nf(t). Or in the Laplace domain,

Y (s) =

(
ω2
n

s2 + 2ξωns+ ω2
n

)
︸ ︷︷ ︸

G(s)

F (s)

The force is typically created by a motor. A computer takes signals from sensors and outputs
a signal which drives the motor.

We can represent the computer as a transfer function and connect it to our system above,
called the plant G(s) to modify its behavior.

The most common way to control the system is to use a PD (proportional derivative) con-
troller where we make the controller behave as the following ODE:

f(t) = Kpe(t) +Kd
de(t)

dt

Or in the Laplace domain
F (s) = (Kp + sKd)︸ ︷︷ ︸

C(s)

E(s)

Note that we can’t truly do a derivative of a real signal but we can get a good approximation.

Basic block operations:

1. Summing node (e3(t) = e1(t) + e2(t))

e1(t) e2(t)

e3(t)

By linearity, E3(s) = E1(s) + E2(s).

2. Series
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U(s) G1(s) G2(s) Y (s)Y ′(s)

Y (s) = G2(s)G1(s)U(s)

3. Parallel

U(s) G1(s)

G2(s)

Y (s)

Y (s) = (G1(s) +G2(s))U(s)

4. Feedback (negative)

U(s) G1(s)

G2(s)

Y (s)
−

Y (s) = G1(s)e(s)

Y (s) = G1(s)(U(s)−G2(s)Y (s)) (since E(s) = U(s)−G2(s)Y (s))

Y (s) =
G1(s)

1 +G1(s)G2(s)
U(s)

Let e(t) = yd(t)−y(t) where e(t) is an error signal and yd(t) is the desired value of the signal
in question. If e(t) approaches zero, then y(t) approaches yd(t). In the laplace domain this
is

E(s) = Yd(s)− Y (s)

This gives the following block diagram

This is called closed loop feedback. The controller C(s) used is called a PD controller.
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Using the block operations above, the overall transfer function is

Y (s) =
(Kp + sKd)G(s)

1 + (Kp + sKd)G(s)
Yd(s)

Y (s) =
ω2
n(Kp +Kds

s2 + (2ξωn +Kdω2
n)s+ (Kpω2

n + ω2
n)
Yd(s)

Now changing Kp and Kd allows us to change the roots of the denominator. This allows us
to modify the behavior of the system.

If Y (s) = G(s)Yd(s) is some general transfer function, then we can multiply out everything
to get the RHS of the equation to be a ratio of polynomials in s. When we do the PFE, all
the terms in the RHS will be terms of the roots of the denominator polynomial and those of
the input Yd(s).

A transfer function is Bounded Input, Bounded Output stable (BIBO) if for ALL
bounded input, the output is always bounded.

The poles of the transfer function are the roots of the denominator polynomial.

The zeroes of the transfer function are the roots of the numerator polynomial. This is
not important for stability.

Theorem 5.7 The transfer function is BIBO stable if and only if all the poles of the transfer
function have a negative real part.

Note that poles with zero real part may be unstable for some inputs due to repeated roots.

Example 5.23 Suppose we have the following system. Design a conroller to make this
system stable, critically damped and decay as fast as e−2t and te−2t.

Notice that the plant is unstable with poles at −1,−1.
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Y (s) =
C(s)G(s)

1 + C(s)G(s)
Yd(s)

=

[
(Kp + sKd)

1
s2−2s+1

1 + (Kp + sKd)
1

s2−2s+1

]
Yd(s)

=

[
Kp + sKd

s2 − 2s+ 1 +Kp + sKd

]
Yd(s)

=
Kp + sKd

s2 + (Kd − 2)s+ (1 +Kp)
Yd(s)

We want the poles at −2,−2. Then we want the denominator to look like (s + 2)(s + 2) =
s2 + 4s+ 4. Then by comparing coefficients, Kp = 3, Kd = 6.

Recall, Y (s) = G(s)U(s). If U(s) = 1, then Y (s) = G(s) or y(t) = g(t).

What input has Laplace transform of 1?

Motivation: 1 = 1
s
s (ie. derivative of step function)

We can approximate this as a function

g∆T,a(t) =


0 t < a
t−a
∆T

a ≤ t < a+ ∆T

1 t ≥ a+ ∆T

Then as ∆T → 0, a→ 0, we approach a step function.
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We’ll consider the derivative to this approximation f(t) = g′(t).

f(t)∆T,a(t) =


0 t < a

1
∆T

a ≤ t ≤ a+ ∆T

0 t > a+ ∆T

f∆T,a(t) =
1

∆T
u(t− a)− 1

∆T
u(t− a−∆T )

F∆T,a(s) =
e−at

s∆T
− e−(a+∆T )s

s∆T

F∆T,a(s) = e−at
1− e−(∆T )s

s∆T

Consider the limit as ∆T → 0,

lim
∆T→0

F∆T,a(s) = lim
∆T→0

e−as
∂

∂∆T
(1− e−∆Ts)

∂
∂∆T

s
(Using L’Hopital’s Rule)

= lim
∆T→0

e−as
se−∆Ts

s
= e−as

We define δ(t− a) ≡ lim∆T→0 f∆T,a(t). This is called the Dirac Delta function. Note that
the Dirac delta function is not an actual function since it has a non-zero integral with only
one point of discontinuity. The integral of this signal is called an impulse.

We have L{δ(t− a)} = lim∆T→0 F∆T,a(s) = e−as. In particular, L{δ(t)} = 1.

We represent this graphically as

Properties:
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1. ∫ ∞
0

δ(t− a)dt = 1

2. Filtering property: ∫ ∞
0

f(t)δ(t− a)dt = f(a)

Proof 5.11 ∫ ∞
0

f(t)δ(t− a)dt = f(a)

By the Mean Value Theorem, there exists t0 such that f(t0) =
∫ a+∆T

a
f(t)dt.∫ ∞

0

f(t)δ(t− a)dt = lim
∆T→0

∫ ∞
0

f(t)
1

∆T
[u(t− a)− u(t− (a+ ∆T ))]dt

= lim
∆T→0

1

∆T

∫ a+∆T

a

f(t)dt

= lim
∆T→0

1

∆T
f(t0)∆T (Mean Value Theorem)

= f(a) (as t0 → a when ∆T → 0)

�

Now recall Y (s) = G(s)U(s). If U(s) = 1 (in other words, an impulse), then Y (s) = G(s)
or taking the inverse Laplace transform, y(t) = g(t) is called the impulse response.

If there are zero initial conditions and u(t) = δ(t − a), then the resulting response is the
inverse Laplace transform of G(s)e−as or the impulse response time shifted by a to give
g(t − a)H(t − a) where we use H(t − a) for the Heaviside function instead of u to avoid
confusion with the input.

In practice, we often hit a linear time invariant system with an impulse to check this impulse
response. We need to normalize so that the integral is 1. This gives us g(t).

Recall Y (s) = G(s)U(s). Can we find y(t) from g(t) for any arbitrary u(t)? We need the
concept of convolution.

5.11 Convolution

Theorem 5.8 (Convolution Theorem)

Let u(t) and g(t) satisfy the conditions that guarantee the existence of the Laplace transforms.
Then, the product of their transforms Y (s) = G(s)U(s) is the transform of the convolution
of g(t) and u(t) which is

y(t) = g(t) ∗ u(t) =

∫ t

0

u(τ)g(t− τ)dτ
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Proof 5.12 Our system is linear therefore superposition holds. If we have a u(t) made of
Diract delta functions, we can sum up time shifted g(t) to get the response.

Let f∆T (t− n∆T ) generate an impulse response at n∆T .

For any arbitrary input,

y(t) ≈
∞∑
n=0

u(n∆T )f∆t(t− n∆T )∆T

y(t) =
∞∑
n=0

u(n∆T )∆T [g(t− n∆T )H(t− n∆T )]

y(t) =
n′∑
n=0

u(n∆T )g(t− n∆T )∆T (H(t− n∆T ) = 0 when n∆T > t)

where n′ is the smallest n such that n∆T > t.

As ∆T → 0, we get a Riemann integral

y(t) =

∫ t

0

u(τ)g(t− τ)dτ

Proof 5.13

F (s)G(s) =

(∫ ∞
0

e−stf(τ)dτ

)(∫ ∞
0

e−sug(u)du

)
=

∫ ∞
0

(∫ ∞
τ

e−s(τ+u)f(τ)g(u)du

)
dτ

Substituting t = τ + u and noting that τ is fixed in the interior integral so du = dt,

F (s)G(s) =

∫ ∞
0

∫ ∞
τ

e−stf(τ)g(t− τ)dtdτ

=

∫ ∞
0

∫ ∞
0

e−stf(τ)g(t− τ)H(t− τ)dtdτ

=

∫ ∞
0

∫ ∞
0

e−stf(τ)g(t− τ)H(t− τ)dτdt

=

∫ ∞
0

(∫ t

0

e−stf(τ)g(t− τ)dτ

)
dt

=

∫ ∞
0

e−st
(∫ t

0

f(τ)g(t− τ)dτ

)
dt

F (s)G(s) = L
{∫ t

0

f(τ)g(t− τ)dτ

}
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5.11.1 Properties

1. Commutative
f ∗ g = g ∗ f

2. Distributive
f ∗ (g + h) = f ∗ g + f ∗ h

3. Associative
(f ∗ g) ∗ h = f ∗ (g ∗ h)

4. Zero Element
0 ∗ f = f ∗ 0 = 0

5. Identity
f ∗ δ = δ ∗ f = f

Proof 5.14 Proofs for all of these can be done in the Laplace domain using the convolution
theorem.

We’ll show f ∗ (g + h) = f ∗ g + f ∗ h.

L{f ∗ (g + h)} = L{f}L{f + h}
= L{f}L{g}+ L{f}L{h}

f ∗ (g + h) = f ∗ g + f ∗ h

�

The convolution integral can be visualized as reflecting one function and taking the weighted
sum as the function is translated from −∞ to ∞.

30



5.12 Simultaneous Differential Equations

There are times when two or more ODEs are coupled together. Suppose we have a circuit
with the vollowing ODEs

di1
dt

+
di2
dt

+ 56i1 + 40i2 = 400

di2
dt
− 8i1 + 10i2 = 0

We can use Laplace transforms and since we solve using algebra, we have a system of n
equations and n unknown

(s+ 56)I1(s) + (s+ 40)I2(s) =
400

s
−8I1(s) + (s+ 10)I2(s) = 0
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Solving using algebra,

I2(s) =
3200

s(s+ 59.1)(s+ 14.9)

i2(t) = 3.64 + 1.22e−59.1t − 4.86e−14.9t

Similarly
i1(t) = 4.55− 7.49e−59.1t + 2.98e−14.9t

6 Fourier Series

6.1 Useful Concepts

If a function is periodic with period p

f(t) = f(t+ p)

A function periodic with period p is also periodic with period 2p, 3p, etc. The smallest such
period p is called the fundamental period. Note that this exntends from −∞ to ∞.

An even function is symmetric about x = 0 such that f(−x) = f(x).

An odd function is antisymmetric about x = 0 such that f(−x) = −f(x).

Properties

1. even + even = even

2. even × even = even

3. odd + odd = odd

4. odd × odd = even

5. even × odd = odd

Theorem 6.1 ∫ a

−a
f(x)dx =

{
2
∫ a

0
f(x)dx f(x) is even

0 f(x) is odd

The following functions all have period 2L

1, cos
πx

L
, cos

2πx

L
, ..., cos

mπx

L
, sin

πx

L
, sin

2πx

L
, ..., sin

mπx

L
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Then the following also has period 2L

a0+a1 cos
πx

L
+a2 cos

2πx

L
+...+am cos

mπx

L
+...+b1 sin

πx

L
+b2 sin

2πx

L
+...+bm sin

mπx

L
+...

= a0 +
∞∑
n=1

[
an cos

nπx

L
+ bn sin

nπx

L

]
If this converges, this will be periodic with period 2L. We’ll ignore convergence since
proofs are extremely involved.

Analagous
to
vector
dot
prod-
ucts

Theorem 6.2 (Orthogonality Properties)∫ L

−L
cos

mπx

L
cos

nπx

L
dx = 0 n 6= m∫ L

−L
sin

mπx

L
sin

nπx

L
dx = 0 n 6= m∫ L

−L
cos

mπx

L
sin

nπx

L
dx = 0 ∀n,m

We can use the following properties to prove the Orthogonality properties

sinx sin y =
1

2
(− cos(x+ y) + cos(x− y))

cosx cos y =
1

2
(cos(x+ y) + cos(x− y))

sinx cos y =
1

2
(sin(x+ y) + sin(x− y))

Proof 6.1∫ L

−L
cos

mπx

L
cos

nπx

L
dx =

∫ L

−L

1

2

(
cos

nπx+mπx

L
+ cos

nπx−mπx
L

)
dx

= −1

2

(
L

nπ +mπ
sin

(n+m)πx

L
+

L

nπ −mπ
sin

(n−m)πx

L

) ∣∣∣L
−L

= 0 (since sinnπ = 0 for all integers n)

�

Proof 6.2∫ L

−L
sin

mπx

L
sin

nπx

L
dx =

∫ L

−L

1

2

(
− cos

nπx+mπx

L
+ cos

nπx−mπx
L

)
dx

=
1

2

(
L

nπ +mπ
sin

(n+m)πx

L
− L

nπ −mπ
sin

(n−m)πx

L

) ∣∣∣L
−L

= 0 (since sinnπ = 0 for all integers n)

�
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Proof 6.3∫ L

−L
cos

mπx

L
sin

nπx

L
dx =

1

2

∫ L

−L

(
sin

nπx+mπx

L
+ sin

nπx−mπx
L

)
dx

= 0 (since sin is an odd function)

�

Theorem 6.3 ∫ L

−L
cos2 nπx

L
= L∫ L

−L
sin2 nπx

L
= L

Proof 6.4 ∫ L

−L
cos2 nπx

L
=

1

2

∫ L

−L

(
cos

2nπx

L
+ 1

)
dx

=
1

2

[
L

2nπ
sin

2nπx

L
+ x

] ∣∣∣L
−L

= L

�

6.2 Fourier Series

If the function f(x) we are trying to represent is periodic,

f(x) = a0 +
∞∑
n=1

[
an cos

nπx

L
+ bn sin

nπx

L

]
This is the Fourier series. We will assume that the equality holds and that we can inter-
change an integration and an infinite summation (not necessarily the case).

We can find coefficients using integration. To find am, multiply by cos mπx
L

and integrate
from −L to L

∫ L

−L
f(x) cos

mπx

L
dx =

∫ L

−L
a0 cos

mπx

L
dx︸ ︷︷ ︸

0 by orthogonality when n=0

+
∞∑
n=1

an cos
mπx

L
cos

nπx

L︸ ︷︷ ︸
0 except for n=m

+bn cos
mπx

L
sin

nπx

L︸ ︷︷ ︸
0 by orthogonality


= Lam

am =
1

L

∫ L

−L
f(x) cos

mπx

L
dx
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For a0, simply integrate from −L to L (we are multiplying by cos 0 = 1).

∫ L

−L
f(x)dx =

∫ L

−L

a0 +
∞∑
n=1

an cos
nπx

L︸ ︷︷ ︸
0 by orthogonality when n=0

+bn sin
nπx

L︸ ︷︷ ︸
odd function




= 2La0

a0 =
1

2L

∫ L

−L
f(x)dx

Note that this is the average value of the function. You can often “eyeball” this.

For bm we similarly multiply by sin mπx
L

and integrate both sides from −L to L∫ L

−L
f(x) sin

mπx

L
dx =

∫ L

−L
a0 sin

mπx

L
dx+

∞∑
n=1

[
an sin

mπx

L
cos

nπx

L
+ bn sin

mπx

L
sin

nπx

L

]
= bmL

bm =
1

L

∫ L

−L
f(x) sin

mπx

L
dx

The coefficients are called the Fourier coefficients and the resulting summation is the Fourier
Series.

Theorem 6.4 Let f be 2L periodic and let f and f ′ be piecewise continuous on the interval
from −L to L. Then the Fourier Series converges to f(x) at every point of x where f is

continuous and to the mean value f(x+)+f(x−)
2

where discontinuous.

Recall, f(x) is piecewise continuous if it has right and left hand limits that are finite.

Example 6.1 Consider the following function, periodic with period 2π

f(x) =

{
−k −π < x ≤ 0

k 0 < x ≤ π

The period is 2π so L = π. We’ll solve for the coefficients

a0 =
1

2π

∫ π

−π
f(x)dx = 0

since it is an odd function (or by eyeballing the average value).
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an =
1

π

∫ π

−π
f(x) cos

nπx

L
dx

=
1

π

[∫ 0

−π
(−k) cos(nx)dx+

∫ π

0

k cos(nx)dx

]
=

1

π

[
−k sinnx

n

∣∣∣0
−π

+ k
sinnx

n

∣∣∣π
0

]
= 0

Or we can notice that f(x) is odd and cos nπx
L

is even so the integral of the product is 0.
Now solve for bn,

bn =
1

π

[∫ 0

−π
−k sin(nx)dx+

∫ π

0

k sin(nx)dx

]
=

1

π

[
k

cosnx

n

∣∣∣0
−π
− k cosnx

n

∣∣∣π
0

]
=

2k

nπ

(
1− cosnπ

2
− cos−nπ

2

)
=

2k

nπ
(1− cosnπ)

cosnπ is 1 when n is even and −1 when n is odd. Then

bn =

{
4k
nπ

n is odd

0 n is even

So then we have

f(x) =
4k

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+ ...

)
=

4k

π

∞∑
σ=0

sin(2σ + 1)x

2σ + 1

Gibbs Phenomenon

Looking at the discontinuity as we add more harmonics.

Using 5 harmonics Using 25 harmonics Using 125 harmonics
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Notice that the overshoot narrows but does not go down. We always have an overshoot.

Theorem 6.5 A Fourier series of an even function of period 2L is a Fourier Cosine series

f(x) = a0 +
∞∑
n=1

an cos
nπx

L

and

a0 =
1

L

∫ L

0

f(x)dx

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx

Proof 6.5 cos nπx
L

is even and sin nπx
L

is odd. So f(x) cos nπx
L

is even and f(x) sin nπx
L

is odd.

a0 =
1

2L

∫ L

−L
f(x)dx

=
1

L

∫ L

0

f(x)dx

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx

=
2

L

∫ L

0

f(x) cos
nπx

L
dx

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx

= 0

�

Theorem 6.6 A Fourier series of an odd function of period 2L is a Fourier sine series

f(x) =
∞∑
n=1

bn sin
nπx

L

and the coefficients are

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx

Example 6.2 The Sawtooth function

37



Let f(x) = x,−π < x ≤ π and be periodic with period 2π. f(x) is odd so a0 = 0 and an = 0.
Now we’ll solve for bn

bn =
2

π

∫ π

0

x sinnx dx

=
2

π

(
sinnx− nx cosnx

n2

) ∣∣∣π
0

= − 2

n
cosnx

= − 2

n
(−1)n

Then

f(x) = 2
∞∑
n=1

(−1)n

n
sinnx

Example 6.3 Consider the previous function shifted by 0.5 to the right. That is, f(x) =
x− 0.5,−π + 0.5 < x ≤ π + 0.5.

We can let x′ = x − 0.5 and find the Fourier series with respect to x′. Then substitute
x′ = x− 0.5 to get the Fourier series with respect to x.

And for all f(x) periodic with period 2L, any interval (x0, x0 + 2L) can be used.
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6.3 Complex Fourier Series

We can write rewrite our Fourier series as

f(x) =
∞∑
n=0

[
an cos

nπx

L
+ bn sin

nπx

L

]
=
∞∑
n=0

[
an
2

cos
nπx

L
+
bn
2

sin
nπx

L

]
+
∞∑
n=0

[
an
2

cos
nπx

L
+
bn
2

sin
nπx

L

]
=
∞∑
n=0

[
an
2

cos
nπx

L
+
bn
2

sin
nπx

L

]
+
∞∑
n=0

[
a−n
2

cos
−nπx
L

+
b−n
2

sin
−nπx
L

]

=
∞∑
n=0

[
an
2

cos
nπx

L
+
bn
2

sin
nπx

L

]
+
−∞∑
n=0

[
an
2

cos
nπx

L
+
bn
2

sin
nπx

L

]
where an = a−n and bn = −b−n since cos is even and sin is odd.

Then we have

f(x) =
∞∑

n=−∞

[
an cos

nπx

L
+ bn sin

nπx

L

]
where

an =
1

2L

∫ L

−L
f(x) cos

nπx

L
dx and bn =

1

2L

∫ L

−L
f(x) sin

nπx

L
dx

Now we also have

cos
nπx

L
=
e
inπx
L + e

−inπx
L

2
and sin

nπx

L
=
e
inπx
L − e−inπxL

2i

Then

f(x) =
∞∑

n=−∞

[
an
e
inπx
L + e

−inπx
L

2
+ bn

e
inπx
L − e−inπxL

2i

]

=
∞∑

n=−∞

[
an − ibn

2
e
inπx
L

]
+

∞∑
n=−∞

[
an + ibn

2
e
−inπx
L

]

=
∞∑

n=−∞

(
an − ibn

2
+
a−n + ib−n

2

)
e
inπx
L

=
∞∑

n=−∞

(an − ibn)e
inπx
L (since an = a−n, bn = −bn)

If we let cn = an − ibn, we have

f(x) =
∞∑

n=−∞

cne
inπx
L
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cn = an − ibn

cn =
1

2L

∫ L

−L
f(x) cos

nπx

L
dx−

∫ L

−L
f(x)i sin

nπx

L

cn =
1

2L

∫ L

−L
f(x)e

−inπx
L dx

Note that cn and c−n are complex conjugates. Also einx and e−inx are complex conjugates.
Therefore the +|n| and −|n| terms are complex conjugates.

Example 6.4 Find the Fourier series for a periodic function f defined by f(x) = ex on
−π < x < π.

cn =
1

2π

∫ π

−π
exe−

inπx
π dx

=
1

2π

∫ π

−π
ex(1−in)dx

=
1

2π

1

1− in
e(1−in)x

∣∣∣π
−π

=
1

2π

1

1− in
(e−inπeπ − einπe−π)

Notice that einπ = e−inπ = (−1)n

cn =
1

2π

1

1− in
(−1)n(eπ − e−π︸ ︷︷ ︸

2 sinhπ

)

=
sinh

π
(−1)n

1 + in

1 + n2

Then

f(x) =
sinhπ

π

∞∑
n=−∞

(−1)n
1 + in

1 + n2
einx

6.4 Amplitude Spectrum

The Fourier series is helpful in finding how much signal there is at each frequency.

The plots are done using real or complex representation, but usually the complex.

f(x) =
∞∑
−∞

cne
inπx
L
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cn =
1

2L

∫ L

−L
f(x)e−

inπx
L dx

and let ω0 = π
L

(the fundamental frequency).

It turns out that the power at each frequency is given by |c0|2 for the constant component
and |c−n|2 + |cn|2 = 2|cn|2 for the nth component. This is Parseval’s Theorem.

P =
1

T

∫ C+T

C

|f(t)|2dt =
∞∑

n=−∞

|cn|2

6.5 Fourier Integral

Now if the signal is aperiodic. For example,

f(x) =


0 −L < x < −1

1 −1 ≤ x < 1

0 1 ≤ x ≤ L

Then we have a Fourier Cosine Series

a0 =
1

L
, bn = 0, an =

2 sin nπ
L

nπ

What happens as L → ∞? If we let ωn = nπ
L

then ωn → 0. So we have more points
in the amplitude spectrum that are more densely packed. In other words, we approach a
continuum.
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Now,

fL(x) =
1

2L

∫ L

−L
fL(v)dv+

1

L

∞∑
n=1

[
cos(ωnx)

∫ L

−L
fL(v) cos(ωnv)dv + sinωnx

∫ L

−L
fL(v) sin(ωnv)dv

]

Let ∆ω = ωn+1 − ωn. Then

(n+ 1)π

L
− nπ

L
=
π

L
1

L
=

∆ω

π

Assume
∫∞
−∞ |f(x)|dx is finite (absolutely integrable). Then the first term approaches 0 as

L approaches ∞.

fL =
1

π

∞∑
n=1

[
cos(ωnx)

∫ L

−L
fL(v) cos(ωnv)dv + sinωnx

∫ L

−L
fL(v) sin(ωnv)dv

]
∆ω

This is a Reimann sum so we have

fL =
1

π

∫ ∞
0

cos(ωx)

∫ L

−L
f(v) cos(ωv)dv︸ ︷︷ ︸

A(ω)

+ sinωnx

∫ L

−L
f(v) sin(ωv)dv︸ ︷︷ ︸

B(ω)

 dω

Theorem 6.7 If f(x) is piecewise continuous in every finite interval and has a right hand
and left hand derivative at every point, and if

∫∞
−∞ |f(x)|dx <∞, then f(x) can be represented

by

fL(x) =

∫ ∞
0

[A(ω) cos(ωx) +B(ω) sin(ωx)]dω

where A(ω) = 1
π

∫∞
−∞ f(v) cos(ωv)dv and B(ω) = 1

π

∫∞
−∞ f(v) sin(ωv)dv.

At each point where f(x) is discontinuous, then f(x) = f(x−)+f(x+)
2

.

Note that the theorem does not require that the function be periodic.

When finding the coefficients, the same principle applies in recognizing even and odd func-
tions. That is, odd functions only involve B(ω) and even functions only involve A(ω).

The Gibbs phenomenon also still holds at discontinuities. The peak narrows as L→∞.

Example 6.5 Consider the function

f(x) =

{
1 −1 < x < 1

0 otherwise
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This is an even function so B(ω) = 0. Now consider A(ω)

A(ω) =
1

π

∫ ∞
−∞

f(v) cos(ωv)dv

=
2

π

∫ ∞
0

f(v) cos(ωv)︸ ︷︷ ︸
even

dv

=
2

π

∫ 1

0

cos(ωv)dv

=
2 sin(ωv)

πω

∣∣∣1
0

=
2 sinω

πω

Then

f(x) =
2

π

∫ ∞
0

cos(ωx)
sinω

ω
dω

Note that at x = 1,−1 the Fourier integral converges to 1
2
.

For this example, instead of integrating to infinity, let’s integrate to L. The approximation
is

fL(x) =
2

π

∫ L

0

cosωx
sinω

ω
dω

As L→∞, we get closer and closer to the square function. This is the Gibbs phenomenon.
It also happens at discontinuities for Fourier integrals.

Now, we’ll substitute the complex exponential for the sin and cos terms

f(x) =

∫ ∞
0

[
A(ω)

eiωx + e−iωx

2
+B(ω)

eiωx − e−iωx

2i

]
dω

=

∫ ∞
0

A(ω)− iB(ω)

2︸ ︷︷ ︸
C(ω)

eiωx +
A(ω) + iB(ω)

2︸ ︷︷ ︸
C̄(ω)

e−iωx

 dω
=

∫ ∞
0

C(ω)eiωxdω +

∫ ∞
0

C̄(ω)e−iωxdω (let ω′ = ω)

=

∫ ∞
0

C(ω)eiωxdω +

∫ −∞
0

C̄(−ω′)eiω′x(−dω′) (C̄(−ω) = C(ω))

f(x) =

∫ ∞
−∞

C(ω)eiωxdω
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where

C(ω) =
1

2π

[∫ ∞
−∞

f(v) cosωv dv − i
∫ ∞
−∞

f(v) sinωv dv

]
C(ω) =

1

2π

∫ ∞
−∞

f(v) (cosωv − i sinωv)︸ ︷︷ ︸
e−iωv

dv

Therefore

f(x) =

∫ ∞
−∞

C(ω)eiωxdω where C(ω) =
1

2π

∫ ∞
−∞

f(v)e−iωvdv

Example 6.6
f(x) = xe−|x|

The function is continuous and odd. Is it absolutely integrable (
∫∞
∞ |f(x)|dx is bounded)?

∫ ∞
−∞
|f(x)|dx =

∫
−∞∞ |x|e−|x|︸ ︷︷ ︸

even

dx

= 2

∫ ∞
0

xe−xdx

= 2

Then f(x) is bounded so we can have a complex Fourier integral. Now we solve for C(ω).

C(ω) =
1

2π

∫ ∞
−∞

te−|t|e−iωtdt

=
1

2π

∫ 0

−∞
tete−iωtdt+

1

2π

∫ ∞
0

te−te−iωtdt

= − 2iω

(i+ ω2)π

Then

xe−|x| =
−2i

π

∫ ∞
−∞

ω

(1 + ω2)2
eiωxdω

6.6 Fourier Transform

This leads to the Fourier Transform with a reshuffling of constants.

Given that a function f is piecewise continuous on [−L,L] for any L.
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Suppose
∫∞
−∞ |f(t)|dt (f(t)| is absolutely integrable). The Fourier transform of f is

F [f(t)] = f̂(w) =

∫ ∞
−∞

f(t)e−iωtdt

And the inverse Fourier Transform is

f(t) =
1

2π

∫ ∞
∞

f̂(ω)eiωtdw = F−1[f̂(w)]

The Fourier transform gives us an indication of the “amount of signal” at any frequency w.
The amplitude spectrum is a graph of |F (w)| vs w.

The aboslutely integrable conditions rules out a number of functions (eg. x, 2, eat, sinωt).
In practice, we look at finite signals with a start and end. Piecewise continuous finite signals
are always absolutely integrable.

Example 6.7 Find the Fourier transform of f(t) = e−at, a > 0, t > 0.

Note that this is absolutely integrable, but we won’t show it here.

F [f(t)] =

∫ ∞
−∞

e−atH(t)e−iωtdt

=

∫ ∞
0

e−(a+iω)tdt

=
1

a+ iω

6.6.1 Properties

1. Linearity
F [af(t) + bg(t)] = aF [f(t)] + bF [g(t)]

2. Time-shifting
F [f(t− t0)] = e−iωt0 f̂(ω)

3. Frequency-shift property
F [eiω0tf(t)] = f̂(ω − ω0)

4. Differentiation Property

If f(x) is continuous and f̂(x)→ 0 as |x| → ∞ and f ′(x) is absolutely integrable, then

F [f ′(x)] = iωf̂(ω)
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5. Convolution Property
F [f(x) ∗ g(x)] = f̂(ω)ĝ(ω)

6. Parseval’s Identity ∫ ∞
−∞
|f(t)|2dt =

1

2π

∫ ∞
−∞
|f̂(ω)|2dω

This means we can look at power either in time or frequency.

6.6.2 Relationship with Laplace Transform

For Laplace, if f(t) = 0 for t < 0 then

L{f(t)} =

∫ ∞
0

f(t)e−stdt

For Fourier, f(t) = 0 for t < 0 and absolutely integrable then

F{f(t)} =

∫ ∞
−∞

f(t)H(t)e−iωtdt =

∫ ∞
0

f(t)e−iωtdt

Then the two are identical except s = iω.

Example 6.8 f(t) = H(t− 1)e−(t−1)sin(t− 1) for t ≥ 0. Find f̂(ω).

This will be absolutely integrable. This is bounded by e−t which is absolutely integrable.

L{f(t)} = e−s
1

(s+ 1)2 + 1

f̂(ω) = e−iω
1

(iω + 1)2 + 1

7 Partial Differential Equations

These are differential equations of several variables.

The notation for partial derivates with x, t has independent variables and u as the dependent
variable:

∂u(x, t)

∂x
≡ ux,

∂2u(x, t)

∂x2
≡ uxx,

∂2u(x, t)

∂x∂t
≡ uxt

There usually is no set methodology to solve PDEs. Often we cannot solve exactly, but only
approximately.

We will only examine the three most common PDE forms seen by engineers:
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1. Laplace equation

∇2u =
∂2u(x, y, z)

∂x2
+
∂2u(x, y, z)

∂y2
+
∂2u(x, y, z)

∂z2
= 0

Describes the steady state heat equation, electrostatic potential in a uniform dielectric,
steady state shape of an elastic membrane.

2. Wave Equation

∇2u =
∂2u(x, y, z, t)

∂x2
+
∂2u(x, y, z, t)

∂y2
+
∂2u(x, y, z, t)

∂z2
=

1

c2

∂2u(x, y, z, t)

∂t2

Describes propagation of electromagnetic waves, sound vibrations

3. Heat Equation

∇2u =
∂2u(x, y, z, t)

∂x2
+
∂2u(x, y, z, t)

∂y2
+
∂2u(x, y, z, t)

∂z2
=

1

k

∂u(x, y, z, t)

∂t

Describes how heat is transferred from a hot area to a cold area by conduction.

The order of a PDE is the highest partial derivative appearing in the equation. For example,
all the above PDEs are second order.

The Laplacian operator is defined as

L(u) ≡ ∇2u ≡
(
d2

dx2
+

d2

dy2
+

d2

dz2

)
A linear PDE is one that satisfies

L(αu+ βv) = αL(u) + β L(v)

where u(x, t) and v(x, t) are two functions. All the above examples are linear.

Example 7.1 ∂2u
∂x2

∂u
∂t

= 0 is non linear.

Homogeneous PDEs is where
L{u} = 0

Non-homogeneous PDEs is where
L{u} = f(u)

for f(u) 6= 0.

A linear combination of solutions to a linear homogeneous PDE is also a solution. If u1, ..., um
are solutions to L{u} = 0 then so is

∑m
i=1 ciui where ci are constants.
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Any solution to the nonhomogeneous PDE is called a particular solution. If L{up} = f(up)
then up is a particular solution.

If u is some solution to the linear homogeneous ODE, then the set of all solutions to the
nonhomogeneous linear PDE is u + up for some u ∈ S where S is the set of all solutions to
the homogeneous case.

There are constant coefficient linear PDEs. There can also be systems of PDEs. We will
only look at the three examples, however. We will also not look at modelling.

We often cannot find ALL the solutions of the linear homogeneous ODE. In some cases,
there will be an infinite number of linearly independent solutions. We have no guarantee
that these are ALL of the solutions but if they allow us to satisfy the initial conditions and
boundary conditions, everything still works practically.

7.1 Classification of Second Order Linear PDEs

We’ll consider the case when there are only two independent variables. Second order linear
PDEs take the form of

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D = 0

where A,B,C are functions of x, y and D can be a function of x, y, u, ∂u
∂x
, ∂u
∂x

.

1. Parabolic if B2 − AC = 0

For example, the heat equation is parabolic. If we hold y and z constant,

α2uxx = ut︸︷︷︸
y in above

Then A = α2, B = 0, C = 0 so B2 − AC = 0.

2. Hyperbolic if B2 − AC > 0

For example the wave equation is hyperbolic. If we hold y and z constant,

c2uxx = utt

Then A = c2, B = 0, C = −1 so B2 − AC = c2 > 0.

3. Elliptic if B2 − AC < 0

For example, the Laplace Equation is elliptic. If we hold z constant,

uxx + uyy = 0

Then A = 1, B = 0, C = 1 so B2 − AC = −1 < 0.
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7.2 Wave Equation

In general, the wave eqaution is
c2∇2u = utt

where c is the speed of propagation.

Let’s consider a simpler example which is one dimensional. Let us consider a vibrating string
where the speed of propagation is given by

c2uxx = utt

As an aside, the speed of propagation is c =
√

T
µ

where T is the tension and µ is the linear

mass density from first year physics.

We will solve for u for 0 < x < π. We need conditions at both these ends. These are called
the boundary conditions. Assume the string is fixed at either end,

u(0, t) = 0, u(π, t) = 0

We also need initial conditions. Suppose the string starts at rest with the following
condition.

u(x, 0) =

{
x 0 ≤ x < π

2

π − x π
2
< x ≤ π

For exam, when solving PDEs we should state

1. Picture of System

2. Equation

3. Boundary Condition

4. Initial Conditions

A trivial solution of this is u(x, t) = 0 which satisfies the boundary conditions but not the
initial conditions.

To solve we use separation of variables and let:

u(x, t) = X(x)T (t)

Then differentiating,

uxx = X ′′(x)T (t)

utt = X(x)T ′′(t)
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So substituting into our wave equation,

X ′′(x)T (t)c2 = X(x)T ′′(t)

Xxx

X
=

Ttt
c2T

= λ

Since we have a function of x equal to λ and a function of t equal to λ, λ must be a constant.

This can now be written as

Ttt = λc2T

Ttt − λc2T = 0

Xxx = λX

Xxx − λX = 0

Also note our boundary conditions are u(0, t) = u(π, t) = 0. Then substituting for u,
X(0)T (t) = X(π)T (t) = 0 so

X(0) = X(π) = 0

The X equation is second order. Depending on the value of λ, there are three cases:

1. λ = 0

From Xxx − λX = 0, Xxx = 0:

X(x) = Ax+B

Our boundary conditions give

X(0) = 0

0A+B = 0

B = 0X(π) = 0

πA+B = 0

So A = B = 0. Then X(x) = 0 so u(x, t) = 0T (t) = 0. This is a trivial solution so we
ignore it.

2. λ > 0

We have Xxx − λX = 0. Solving the characteristic equation gives roots of ±
√
λ:

X(x) = Ae
√
λx +Be−

√
λx
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Our boundary conditions give

X(0) = 0

A+B = 0

X(π) = 0

Ae
√
λx +Be−

√
λx = 0

So A = B = 0. This is a trivial solution so we discard it.

3. λ < 0

As before, our characteristic equation gives roots of ±
√
λ = ±

√
−λi.

X(x) = A sin(−
√
−λx) +B cos(−

√
−λx)

The our boundary conditions give

X(0) = 0

0 = 0A+B

B = 0

X(π) = 0

A sin(
√
−λπ) = 0

Since A is arbitrary, we know sin(
√
−λπ = 0 so

√
−λπ = nπ for positive integers n.

Then
n =
√
−λ

Therefore we have
Xn(x) = An sin(nx)

Now for the last case, we have a nontrivial solution. Let’s use that to solve the T
equations.

We have −λ = n2 so from Ttt − λc2T = 0 above

Tntt + n2c2Tn = 0

so we have roots ±nci if we solve the characteristic equation. Then

Tn = Cn sin(nct) +Dn cos(nct)

So for each positive integer n,

Xn(x)Tn(x) = An sin(nx)[Cn sin(nct) +Dn cos(nct)]
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Then we have u from the infinite summation

u(x, t) =
∞∑
n=1

[En sin(nx) sin(nct) + Fn sin(nx) cos(nct)]

We have two initial conditions: the profile starts at rest and the initial position.

u̇(x, 0) = 0 and u(x, 0) =

{
x 0 ≤ x < π

2

π − x π
2
< x ≤ π

Using the first initial condition,

u̇(x, 0) =
∞∑
n=1

[En sin(nx) cos(nct)nc− Fn sin(nx) sin(nct)nc]
∣∣∣
t=0

0 =
∞∑
n=1

En sin(nx)nc

En = 0

Then

u(x, t) =
∞∑
n=1

Fn sin(nx) cos(nct)

From the second initial condition,

u(x, 0) =
∞∑
n=1

Fn sin(nx)

We can solve the Fourier series to obtain u(x, t).

7.3 Laplace Equation

u(x, y) is the steady state temperature in a 2-D environment. The Laplace Equation gives
us

uxx + uyy = 0

We’ll solve for the temperature in an infinite bar in the x direction and existing from 0 <
y < π.

Our boundary conditions are u(x, π) = 0, u(x, 0) = 0 and u(x, y) = 0 as x→∞.

Our initial conditions are u(0, y) = y2 − πy.
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We’ll assume
u(x, y) = F (x)G(y)

so uxx = FxxG and uyy = FGyy. Then substituting into our Laplace equation,

FxxG+ FGyy = 0

Fxx
F

= −Gyy

G
= σ

Then for some constant σ,

Fxx − σF = 0 and Gyy − σG = 0

With our boundary conditions,

u(x, 0) = 0⇒ F (x)G(0) = 0

G(0) = 0

u(x, π) = 0⇒ F (x)G(π) = 0

G(π) = 0

We’ll solve for G first.

When σ = 0,
Gyy = 0⇒ G = Ay +B = 0

And our boundary conditions give us A = B = 0 so discard this.

Now consider when σ < 0
G(y) = Ae

√
λy +Be−

√
λy

Using our boundary conditions, A = B = 0 so discard also.

Consider when σ > 0. We have complex roots at ±
√
σi.

G(y) = A cos(
√
σy) +B sin(

√
σy)

Our boundary conditions give

G(0) = 0⇒ 1A+ 0B = 0

A = 0

G(π) = 0⇒ B sin(
√
σπ) = 0
√
σ = n (for positive integers n)

Then for positive integers n,
Gn(y) = Bn sin(ny)
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Now, Fnxx − n2Fn = 0 for n = 1, 2, 3.... There are two real roots to the CE at ±n. So

Fn(x) = Cne
nx +Dne

−nx

Therefore

un(x, y) = Fn(x)Gn(y)

= (Cne
nx +Dne

−nx)(Bn sinny)

Let u(x, y) =
∑∞

n=1(Cne
nx + Dne

−nx)(Bn sinny). Now limx→∞ u(x, y) = 0 so Cn = 0.
Therefore

u(x, y) =
∞∑
n=1

Nne
−nx sinny

where Nn = DnBn.

Look at x = 0

u(0, y) = y(y − π)

=
∞∑
n=1

Nn sinny e0

=
∞∑
n=1

Nn sinny

for 0 ≤ y ≤ π. This is a Fourier sine series.

Nn =
2

π

∫ π

0

y(y − π) sinny dy

=
4

πn3
((−1)n − 1)

=

{
−8
πn3 n is odd

0 n is even

Then we have

u(x, y) =
∞∑
i=1

e−(2i−1)x sin((2i− 1)y)
−8

π(2i− 1)3

Example 7.2 Heat equation on a rod going from 0 to π insulated on the ends so that ∂u
∂x

= 0
for x = 0, π. u(x, t) is the temperature. The heat equation gives

α2uxx = ut

For simplicity, let α = 1 (α is normally related to the heat conductance). Assumute an
initial temperature distribution of u(x, 0) = sin x for 0 ≤ x ≤ π.
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Assume separable so u = F (x)G(t). Then uxx = FxxG and ut = FGt.

FxxG = FGt

Fxx

F
=
Gt

G
= λ

where λ is a constant. Therefore Fxx − λF = 0 and Gt − λG = 0.

Remember ux(0, t) = ux(π, t) = 0 so Fx(0) = Fx(π) = 0. Then we solve for F (x) first.

If λ = 0 then Fxx = 0 so F (x) = Ax+B. Then Fx(x) = A. Since Fx(0) = Fx(π) = 0, A = 0.
B is arbitrary so F (x) = B. As well Gt = 0 so G(t) is a constant. Then for λ = 0, we get a
constant (u(x, t) = C).

If λ > 0 we have

F (x) = Ae
√
λx +Be−

√
λx

Fx(x) = A
√
λe
√
λx −B

√
λe−

√
λx

Substituting into boundary condition, we will find that A = B = 0. This is the trivial
solution so discard.

If λ < 0 we get complex roots

F (x) = A cos
√
−λx +B sin

√
−λx

Fx(x) = −A
√
−λ sin

√
−λx +B

√
−λ cos

√
−λx

Now substituting our boundary conditions,

Fx(0) = B
√
−λ

Fx(0) = 0

B = 0

Fx(π) = −A
√
−λ sin

√
−λ︸︷︷︸
n

π

Fx(π) = 0n2 = −λ

Look at Gt − λG = 0 or Gnt + n2G=
n 0.

Gn(t) = Cne
−n2t

u(x, t) = d0 +
∞∑
n=1

dn cosnx e−n
2t
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This is a cosine series. The last thing is to consider the initial conditions.

u(x, t)
∣∣∣
t=0

= d0 +
∞∑
n=1

dn cosnx e−n
2t
∣∣∣
t=0

= sinxd0 +
∞∑
n=1

dn cosnx = sinx

Note that d0 is the average value

d0 =
1

π

∫ π

0

sinx dx =
2

π

Also

dn =
2

π

∫ π

0

sinx cosnx dx

=
2

π

(−1)n︷ ︸︸ ︷
cos πn+1

1− n2

Then we have

u(x, t) =
2

π
+
∞∑
i=1

2

π

2

1− (2i)2
cos(2ix)e−(2i)2t
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