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1 Method of Undetermined Coefficients

This method is used to guess the form of the particular solution to a nonhomogeneous
solution.

Function of x Form of y
ekx k,ekm
" kyx™ + ko™ '+ L+ ki + Ky
CoS W, sin wx Acoswr + Bsinwz
e"® cos wr, e sinwx e”(Acoswr + Bsinwz)

If what we have is already in the solution, multiply it by x.

2 Second Order DE

2.1 Solving

Consider the second order homogenous case y” + ay’ + by = 0. Assume a solution is in the
form y = e*. Then derivatives are y' = Ae* and 3’ = A\2e**. So we obtain

(A2 +aX+b)eM =0

Example 2.1
y'+y —2y=0
AN+ A—2)=0
A+2)(A=1)=0
So Ay = —2, Ay = 1. Therefore y = ¢;eM* + 2™ = 167 2% + co€®.

2.2 Roots are Equal

So a? — 4b = 0 meaning that y” + ay’ + %y = 0. We know that
37 Let’s try y» = we 2%, Then yh = e72% + %‘Ixe*%x,

Consider if A\, = —3.
one root is a solution so y; = e~

Yy = —ae” 2" 4 _T‘ﬁxe_%x. It can be shown that this is a solution.

2.3 Complex Roots

Complex roots are always conjugate. Also recall € = cosx + isin .



Let Ao = 3(—a £+ Va? —4b) = a +iw where a = —%,w = —@_

y =iy + chys
— deltio | ot o)
— clleowejwz 4 Céeawe—jw:c
We can rewrite this as y = (¢} + ¢})e™* coswz + j(¢] + ¢5)e** sinw.
Let ¢] = %, dy = 422 Since €% = coswz + isinwz and e 77 = coswz — isinwz.
y = c1e* coswr + e sinwx
Example 2.2 ¢’ + 2y +2y =0
Sod=-1xj,a=-1,w=1

Y =cie *cosT + ce”sinx

3 Higher Order ODEs

This method will work for higher order ODEs with constant coefficients: y™ + a,,_y™ " +
wary +apy = 0.
1. Find the characteristic equation (y = *®).

)\+an_1)\"_1 + —|— a1/\ + ag = 0
2. Solve for the roots (ie. using numerical solver)
3. The solution is a sum of independent solutions of the form

(a) Real roots (not repeated)
Y = 6/\”:

(b) Complex roots (always in conjugate pairs)
Yii+1 = elodiw)s
= e*(cy sinwx + ¢1 cos wx)
(c¢) Real repeated roots of order m
Yiit1,sitm—1 = (€1 + CoT + ... + Cmmmfl)e)\x
(d) Repeated complex roots of order m

Yiit1...ivom_1 = (e sinwr + ¢y coswz) (dy + dox + ...dpa™ )
Example 3.1 yl0 — 4yPl 4 1491 + 324181 — 79y + 260y + 676y = 0
The roots are A = —2,—2,2 4+ 3¢, 2 + 3.

y = (c1 + cox)e > + e**(c38in 3x + ¢4 cos 3x) (¢5 + co1)



3.1 Stability

We consister a system to be stable if the solution y(¢) to the ODE is bounded for any initial
condition. That is, there exists a constant M such that |y(t)| < M,Vt > 0. We consider the
system to be unstable if the solution is bounded.

We can look at the roots of the characteristic polynomial to check if the solution is bounded.
We need for all roots, Re(\) < 0 or Re(A\) = 0 if not repeated.

Example 3.2 Is y0 — 4¢6] + 14y + 32y — 79 4 260y’ + 676y = 0 stable, with roots
A= —2,-22+3i?

It is not stable due to 2 + 37 root.

3.2 Nonhomogeneous Case

Recall the method of undetermined coefficients.

Example 3.3 y" + 4y = 822

Look at the homogeneous case y” + 4y = 0. The characteristic equation is A\ +4 = 0 so
A = +2i. Then the homogeneous solution is y;, = ¢; sin 2x + ¢, cos 2.

So we try y, = kex? + kyz + ko. Then Yy, = 2kew + k1 and y, = 2ky. Substituting into the
differential equation, 2ky + 4(kox? + k12 + ko) = 822. Solving yields kg = —1,k; = 0, ky = 2.
Then y = ¢; sin 2z + ¢y cos 2x + 222 — 1.

Example 3.4 ¢’ — 3y + 2y = ¢e*

Look at homogeneous case. The characteristic equation is A\ — 3\ +2 = 0 so A\jo = 1,2.
Then vy, = c1e* + cpe®.

We can’t use y, = ke® since it’s in the equation so we'll try y, = kxe®, y, = k(e® + ze®),
Yy, = k(2" + ze®). Substituting back, we get k = —1. So y = c;e® + c2€%" — xe®.

Example 3.5 ' — 2y +y=¢"+z,y(0) =1,4(0) =0

Homogeneous equation is A2 —2A+1 = 0. So the homogeneous solution is y, = c;e® + cpwe®.
Now we look for the particular solution. Usually we try y, = k1e” + kox + k3, but ke” and
kyze® is part of the homogeneous solution so we try y, = kjz2e” + kox + k3 instead.

Solving for constants, we get y, = %zrzem +r+2 Soy=ce®"+cre* +x+2+ %3:26’”. We
must solve the intial value problem using the particular solution.



4 Harmonic Oscillators

Differential equation of a spring is mi + ¢t + kx = F and for an electrical system, it is
L% + R% + %z = ‘il—?. These are both in the form

Y+ 2€wny’ +wpy = f(t)wy

where w,, = natural frequency and £ = damping ratio. Notice that both are non-negative.

¢ X >
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Figure 1: Mass, spring, dampener system

4.1 Homogeneous Case

Then the characteristic equation for the homogeneous case is A* + 26w, X\ + w? = 0. So
Mo = —Ew, £ wy/E2 — 1. We also have £ = 2\/ch1€ and w, = %

The real part is always negative since /&2 — 1 < £. So our solution is a negative exponential,
oscillating if there are complex roots. This makes sense physically.

4.1.1 Case 1, Overdamped

In this case, £ > 1. We get two real negative roots.

At

Yp = cre”t + 626>‘2t

We call this overdamped.



0.15

Q1Q__h.””_fm..h”.””;hh.”J._¢”.h”“.m-
Over damped .

c,,t..:a"damed

“ ;_r' Under @amped
20,051 Misansinasnesnin el 1
0.1 : 5
0 5 10 15 20

Time
Figure 2: Overdamping, critical damping and underdamping

4.1.2 Case 2, Critical Damping

This is when { = 1. We then have repeated roots A\ 3 = —&wy,.
yp = cre” 8t 4 cote 9t

This approaches 0 the fastest and is called critical damping.

4.1.3 Case 3, Underdamped

We have { < 1. Then we have two complex roots with a negative real part: Ao = —{w,, £

wpiy/1 —E.
where w = w,/1 — &2

yn = e *n(Acos(wt) + Bsin(wt))

4.2 Nonhomogeneous Case

Equations are in the form §j + 26w,y + w2y = f(t)w?. We need to look at the three cases:
overdamped, critically damped and underdamped. All those cases were stable for the homo-
geneous case.

Suppose f(t) = F,, cos(wt). Using the method of undetermined coefficients, the form of the



solution is y(t) = yu(t) + Acoswt + Bsinwt. Substituting and simplifying, we get

N (w2 — w?) (W2 FY) - 2 wnw(w2 Fy) -
= COS W S11 W
V=T 02 2 2 (2bww,)? (@2 — )2 + (26w, )?

S

We want to transform the sin and cos into just one cos in the form y, = E cos(wt + ®).

yp, = E cos(wt + D)

= Fcos®coswt — Esin  sin wt

Then u = Ecos® and v = Esin® so E = Vu2 + v2 and ® :tan_l_T”.

The particular solution is oscillating at the same frequency as the input but with different
amplitudes and a phase shift. Now consider when there is no damping:

w
y = Acoswyt + Bsinw,t + ———
w

n

4.2.1 Beating

Suppose wy, is close to w and y(0) = 0 and y(0) = 0. Then we get

FOCUQ W, — W w + w
t) =2 2 sin(— t) sin(— t
y(t) g ( ) sin( )
N ——
env?glrope same frequency as f(t)

4.2.2 Resonance

If w, = w then we can’t use this equation since the forcing function is the same form as yj.
We have to try y, = t(Acosw,t + Bsinw,t). And that blows up linearly.

5 Laplace Transform

5.1 Definition

Let f(t) be defined for all ¢ > 0. Then
C{f(t)} = F(s) = / e~ f(t)dt
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is called the Laplace transform of f(¢) for all s such that this improper integral exists. Also
s is a complex number.

The inverse is denoted as L' {F(s)} = f(t).

5.2 Table of Transforms

f(&).t =0 F(s)
1
1 -
S
I
! 2
2
2
! P
" nl
t Sn-i—l
eat ]'
S —Sa
cos at 5 5
S 4@— a
sin at
s2 4 g?

5.3 Derivation of Transforms

Proof 5.1 Consider the Heaviside function. For ¢t > 0, f(t) = 1.
F(s) :/ e "t (—1)dt
0

1 T
= lim (——e‘“) ’
T—o00 S 0
1 -1
= lim [——e‘St — —]
= (if Re(s) > 0 then this converges)

Then for the Heaviside function, F(s) = 2. The region of convergence is Re(s) > 0 because
otherwise the limit is not defined.



Proof 5.2 Consider f(t) = e t > 0.

T
= lim ety
T—o0 0
T
= lim ef(sfa)t
T—oo @ — S 0

for Re(s) > a.

We can keep doing this for other functions to generate tables.

The Laplace transform is linear (ie. £{af(t) + bg(t)} = a L{f(t)} + bL{g(t)})
Proof 5.3
£laf(t)+ b0} = [ e af (@) + ba(t)
—a /0 T et (1t + b /O ettt
— aF(s) + bG(s)

Note that the region of convergence is the intersection of the region of convergence of the
original functions.

The inverse Laplace transform is also linear.

L HaF(s) +bG(s)}y =a L HF(s)} +bLH{G(s)}

Example 5.1 f(t) = coshat
F(s) = L{coshat}
1 1
:£{§eat+§6—at}

_1 at 1 —at
—2£{e }—|—2£{e }

_1 1 +1 1
2s—a 2s+a
B S
_52—a2

The region of convergence is Re(s) > a and Re(s) > —a. So we want Re(s) > a.

10



Example 5.2 F(S) = %

=e”' —e
Proof 5.4
L{t"} = s
We showed earlier that this holds for n = 0 with the step function.
Assume for some n that £L{t"} = 2.
L{t") = / e St dt (integrate by parts: v = ¢"T! du = e~*'dt)
0
1 oo 1 [
— __e—sttn-l-l ‘ +7’L + / e—sttndt
s 0 s Jo
0 if Re(s)>0 £{tn}
n+1 n!
= 0 + s Sn+1
_ (n+1)!
- Sn+2
So the formula is true by induction. O
Proof 5.5 w
L{sinwt} = ——
{ ' 52 4+ w?

Remember that s is in the complex domain.

) eiwt . e—iwt
L{sinwt} =L {T}

= o (£(e™) — £{e)

2

1

2_(s—zw S—Hw)

1 s+ w 1 s—ww
2_(s—zws+zw_s+iws—z'w>

1 (s+w s—w

2_(32+w2_5+w2)

_82+w2 -

11



5.4 Existance of Laplace Transform

Not all f(t) have a Laplace transform. We need the integrand e~ f(¢) to go to zero suffi-
ciently fast.

For example, e *'t" e~t¢*! can be made to decay sufficiently fast. But e ¢!’ will not

converge for any s.

f(t) does not need to be continuous. Assume f(¢) is piecewise continuous. That is, it is
continuous on all but a finite number of points and at those points, it has finite left and
right-sided limits (only finite jumps).

Theorem 5.1 Let f(t) be a function that is piecewise continuous on every finite interval
fort >0 and |f(t)] < Me™ for some a. Then the Laplace transform exists for Re{s} > a
and is unique except at the discontinuities.

Example 5.3 £ {\/%} \/% is not continuous at ¢ = 0 but is continuous everywhere else for

t > 0 so the Laplace transform exists.

L {etz} does not exist since there does not exist a such that | f(t)| < Me™.

Example 5.4 What is the Laplace transform of

t 0<t<l
-y 05,

C{F(0)} = / o

1

= / e *tdt (since f(t) =0 for t > 0)
0
1 —st ! 1 ' —st : :

=—— "t +- [ e Tdt (integration by parts)
s o s/

1 1 1 4P

Cset s S 0

12



5.5 Inverse Laplace

LY F(s)} = ;L:/azmlﬂsk“ds

2T ) f—ioo

This is an integration in the complex plane. The a depends on the region of convergence.

If F(s) is rational, we can use tables and partial fraction expansions.

Example 5.5

3 1
s—7 s
ft)=3e"+t,t>0

5.6 Application to ODEs

We need to figure out what happens when we differentiate a function.

Theorem 5.2 Suppose f(t) is continuous for t > 0 and satisfies the conditions to have a

aft)

Laplace transform. As well, suppose 18 piecewise continuous on every finite interval in

dt

t > 0. Then, there exists an o such that E{ dtt } ezists for Re{s} > a and

c {dfd—?} — S L{f(1)} — F(0)

where f(0) is the initial value.

Proof 5.6

) / F(8)(~s)e"ds

—f(0)+s/0 f(t)e *tdt
—f(0) + s L{f ()}

Although not shown, we should keep track of the region of convergence.

13



We can apply this twice to get

= s L{f(t)} — s£(0) = f'(0)

Or generally,

{ LY = ) - 050 -2 0) - - 7 0)

We can now solve ODEs with initial values using algebraic techniques.

Example 5.6 & =z,2(0) =1

L{i} = L{x}
sX(s) —x(0) = X(s)
1
X(s) = s —x(0)
X(s) = s i 1
z(t)=¢t>0 (taking the inverse Laplace)

Example 5.7 §j=1,y(0) =0,9(0) =1

L4} = £{1)
2Y(s) = syl(0) — /(0) = -
s*Y (s) = % +1
v di L
P

Example 5.8 Find L£{coswt}.
If f=sinwt, f(0) =0, f' = wcoswt.

14



L{f'} = s L} = f(0)

E{(A) COSC«)t} = S% —
s+ w
s
L t}=———
{coswt} R

Example 5.9 j+ 9y =1,y(0) =0,9(0) =1

L4+ 9y} = £{1)

Ly} — 5y(0) ~ 5(0) + 9 L{y} = -
LK +9) = -+ 5y(0) + 3(0)
)=
Llvs = 8(821+ 9) T i 9
E{y}zi_%szj—y +%32—?—32
L{y} = % - %cos?)t—i- %sinBt

5.7 Shifting Theorems and the Heaviside Function
5.7.1 s-Shifting

Theorem 5.3 If f(t) has a transform F(s) where s > «, then e f(t) has the transform
F(s—a) where s —a > a.

Ll f(8)} = F(s — )
Proof 5.7
Fls—a)= [ ooy
= / h e (e f(t))dt

0

= L{e"f(t)}

15



We can now use partial fraction expansion of all rational functions in s using our previous
table.

f({t),t>0] F(s)
eattn TL'

(s —a)nt!
e coswt s—a

(s —a)? + w?
e™ sin wt i

(s —a)? + w?

Example 5.10

1
F(s) = s2(s? + 4s + 40)
B 1
(5T 27 169
A B C(s+2) 6D
=2 taT s 2 2 1 a2
s s £5+2) +62 (s4+2)2+6
form where we can directly take inverse
(11 1 s+2 1 6
JH=£ {—@+m+m—<s+z>2+6z _ﬁ—(s+2)2+62}
= —L + it + ie_% cos 6t — L6_% sin 6¢
400 40 400 300

Or solve using complex domain

Example 5.11

1
s2(s? + 4s + 40)
A B C D
IR T gy
f(t) _ A+Bt+ce(—2—6i)t+De(—2+6i)t

F(s) =

C and D will be a complex conjugate pair.

Example 5.12 §+ 2y + 5y = 0,y(0) = 2,9(0) = —4

16



Taking Laplace,
s%Y (s) — sy(0) — 9(0) + 2(sY (s) — y(0)) +5Y(s) =0
Y(s) = 2s

§2+2x+5
2s

(s+1)2+22
 A(s+1) N 2B
(s 1)2422 0 (s 1)2 422

Solving gives A =2, B = —1.

2(s+1) 2
(s+1)2+22 (s+1)2422
y(t) = 2 Tcos 2t — e Fsin2t

Y(s) =

Example 5.13 j—2y+y =-¢€"+1t,y(0) =1,9(0) =0

by = V() — s(0) — (0) — 25 () + y(0)) + Y (s)
5—2 1 1
Y(s)= (s —1)2 * (s —1)3 +52(s —1)2
——

_ 2
L5 =5

! LN, e 2 1.1
S \s—1  (s—1)2 2 (s—=1)2 s—1 2 s

ett?
:et—tef+7+tet—zet+t+2

2t

¢
z—et+t+2+7e

Example 5.14 §+ 6y + 13y = 1,y(0) = 0,9(0) =0

Y (5) — 59(0) — (0) + 6(sY (5) ~ y(0)) +13Y () = -
(52 + 65 + 13)Y (s) = é
1
Yis) = s(s? + 65+ 13)
1
YO = v 0
Y(s):é—i— B(s+3) 2C

s (s+3)2+22+(s+3)2+22
Y(s) = A+ Be * cos 2t + Ce * sin 2t

17



5.7.2 Time Shifting

Define the Heaviside Step Function u(t — a) as

u(t—a):{o t<a

1 t>a

Theorem 5.4 A delayed function

~ 0 t<a
)= {f(t—a) t>a
has Laplace transform e~ L{f(t)}.
Equivalently,
L{f(t = aJul(t —a)} = e F(s)
Proof 5.8

7(15F — —as > —S8T d
e (s)=¢e /0 e T f(r)dr
:/ 6_5(T+“)f(7)d7
0
:/ooe“f(t—a)dt (with t =7+ a)

_ /O e talt — a)f(t — a)dt

e—as

Example 5.15 Show L{u(t —a)} =
Since L{u(t)} = & then L{u(t —a)} = <

s

—as

S

Example 5.16 Find L’l{e;:s}.

1 12
-17 _ v
£ {53 2
—3s 2
1€ (=3 _
L) =5 ult=3)

Example 5.17 Find the transform of

2 0<t<m
f(t)=<0 T<t<2mw
sint t> 2w

18



We'll write f(t) in terms of Heaviside.

From 0 to 7, f(t) = 2u(t)
From 0 to 2w, f(t) = 2u(t) — 2u(t — m)
For all ¢,
f(t) =2u(t) — 2u(t — m) + u(t — 27) sin(t — 2m)

—_——
L{sint}= ﬁ

2 771'32 —ZTS
LU} = —e™ +e ’ 211

Notice that we have to shift sint by 27 to get it into a form where we can apply the theorem.

Example 5.18

2 6—25 6—25 e~ TS
F(S)—?—252 _45 +SS2—1

f(t) =2t — 2(t — 2)u(t — 2) — 4u(t — 2) + cos(t — m)u(t — )

Example 5.19 § — 4y + 4y =t + 2u(t — 3),y(0) = 0,9(0) =0

§J—A4y+ 4y =t + 2u(t — 3)

Y (5) — sy(0) — (0) — 4(sY () ~ y(0)) + 4V (5) = -5 + 25
(s — 4s + 4)Y (s) = slz + 26838
(s — 2)2Y (s) = Slz 2" i
1 2e 38

After partial fraction expansion,

Y(s):(iJri— L1 >+e‘3s(i— t ! )

4s 452 4(s—2)  4(s—2)? 2s  2(s—2) (s—2)?
1t ¥ te®  wu(t—3) 2Pyt —3)
474 4 4 2 2

+ (t — 3)e2 3yt — 3)

Example 5.20

19



Eg -%Q

2.

LN

l 21 Z’i'.

ft)=2=2u(t —2)+ (t — Du(t — 1) — (t — 2)u(t — 2) — lu(t — 2) + sin(t — 2)u(t — 2)

2 26—3 N e—s 6—25 6—23 N 6—28
s s 52 52 s s24+1

Example 5.21 L{u(t — 1)t}

F(t) = tult — 1)
(t—Dult —1) +u(t —1)

—S

—S

€ (&

52 s

5.8 Periodic Signals

Theorem 5.5 If f is periodic with period T' and piece-wise continuous over this period, then

LU = o [ S0
—_—

Laplace of one period

Periodic means f(t) = f(t 4+ T).

Note: if we take the Laplace transform over one period, we must make sure that the function
is equal to 0 for ¢ > T

20



Proof 5.9
F(s) = /O e~ F (1)t
T 2T 3T
— —st £(4)d —st£(4)d () dt ...
/Oe f(t)t+/ c f(t)t+/ e~ F(1)dt +

t=r 4T t=r42T
T T T
= / e "t f(t)dt + / e f(r + T dr + / e s f(r 42T ) dr + ...
" " f(7) ’ f(7)

= /OT e S f(t)dt + e /OT e Sf(t)dt 4 e /OT e S f(t)dt + ...

T
(et ety )/ e~ (#)dt
0

1 T
g / e S f(t)dt (geometric series with |e™| < 1)
— e S 0
Example 5.22
ornay
7
-k |
T 7T
=

Looking at one period,
T

Then the Laplace transform for one period is

Using the previous theorem,

S S

1 kE 2k _r k
LU}y =17 (— - —e 4 ;6_T5>

21



5.9 Integration of f(t)

Theorem 5.6 If f(t) is piecewise-continuous and satisfies | f(t)| < Me, then
t 1
ef [ #war} = ctroy
0

Proof 5.10 One can show that if |f(¢)] < MeM then [ f(7)dr will have a Laplace trans-
form.

Let g(t) = [ f(r)dr then f(t) = %8
L{f(t)} = L{g (1)}
LU (1)} = 5 L{g()} — ooy

Lig()} = - L)

Now one can show that [g(t)| < which means there is a Laplace transform.

5.10 Control Systems

Assume our system initially has zero initial conditions. The forcing function u(t) is considered
the input to the system and the output is the variable y(¢) that we are trying to solve for.

aoy"(t) + -.any(t) = boul" () + ... + by u(?)

[ J
-~ -~

outputs inputs

Taking derivatives with zero initial conditions are essentially multiplication by s. Then
taking the Laplace transform gives

Y (s)(aos™ + ... + an) = U(s)(bos™ ' 4 ... + bp_1)
Y(s) = G(s)U(s)
where
bQSn_l + ...+ bn,QS + bn,1
apS" + ... +a,_18+ a,

G(s) =

G(s) is called the transfer function.

This is useful for block diagrams, for example mass spring damper system with a controller.
We want to change the damping characteristics to achieve critical damping.
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M-C-k w‘rph Con'l'{‘ouer M-C ~K
‘ 5 b e SYstem

- chanenrt  FGO) T (
e 8 digpocarent -—e{ Qig)._Jgf)

The equations are §j + 26w,y + w2y = w? f(t). Or in the Laplace domain,

2
Vo) = (g ) £

N J/
-

G(s)

k"-!"_

The force is typically created by a motor. A computer takes signals from sensors and outputs
a signal which drives the motor.

We can represent the computer as a transfer function and connect it to our system above,
called the plant G(s) to modify its behavior.

The most common way to control the system is to use a PD (proportional derivative) con-
troller where we make the controller behave as the following ODE:

de(t)

F() = Kyet) + Ko™

Or in the Laplace domain
F(s) = (K, + sKq) E(s)
————

C(s)

Note that we can’t truly do a derivative of a real signal but we can get a good approximation.

Basic block operations:

1. Summing node (e3(t) = e1(t) + ea(t))

€1 (t) T €2 (t)

63(t)

By linearity, E5(s) = Ei(s) + Ea(s).

2. Series
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Ul(s) G1(s) Y(s) Ga(s) — Y (s)

Y(s) = Ga(s)G1(s)U(s)

3. Parallel
‘ Ga(s)

U(s) Ga(s) g Y(s)

Y(s) = (Gi(s) + Ga(s))U(s)

4. Feedback (negative)

Y (s) = Gi(s)(U(s) — Ga(s)Y(s)) (since E(s) = U(s) — Ga(s)Y (s))
() = (s
1+ Gi(s)Ga(s)

Let e(t) = ya(t) — y(t) where e(t) is an error signal and y,(t) is the desired value of the signal
in question. If e(t) approaches zero, then y(t) approaches y4(t). In the laplace domain this
is

E(s) = Ya(s) = Y(s)
This gives the following block diagram

Controller Plant

Y (s)
d E(s)
’

This is called closed loop feedback. The controller C(s) used is called a PD controller.
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Using the block operations above, the overall transfer function is

_ (K +sKq)G(s)
Yis) =17 (K, + Si(d)G(s)Yd(S)
Y (s) = wi (K, + Kgs Y(s)

$2 4+ (28w, + Kgw?)s + (Kpw?2 + w?)

Now changing K, and K, allows us to change the roots of the denominator. This allows us
to modify the behavior of the system.

If Y(s) = G(s)Ya(s) is some general transfer function, then we can multiply out everything
to get the RHS of the equation to be a ratio of polynomials in s. When we do the PFE, all
the terms in the RHS will be terms of the roots of the denominator polynomial and those of
the input Yy(s).

A transfer function is Bounded Input, Bounded Output stable (BIBO) if for ALL
bounded input, the output is always bounded.

The poles of the transfer function are the roots of the denominator polynomial.

The zeroes of the transfer function are the roots of the numerator polynomial. This is
not important for stability.

Theorem 5.7 The transfer function is BIBO stable if and only if all the poles of the transfer
function have a negative real part.

Note that poles with zero real part may be unstable for some inputs due to repeated roots.

Example 5.23 Suppose we have the following system. Design a conroller to make this
system stable, critically damped and decay as fast as e 2! and te=?.

I:; (s) Controller Plant

Notice that the plant is unstable with poles at —1, —1.
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 C(s)G(s)
Y(s) = myd(s)

(K, +5Kd)s2 23+1
L+ (Kp + sKa) g 2s+1

Kp+ SKd
- Y,
[52 —25+1+K,+ stl als)

K +8Kd

T2+ (K _pz)s T(1+ K,,)Yd(s)

Yd(S)

We want the poles at —2, —2. Then we want the denominator to look like (s + 2)(s +2) =

s* +4s + 4. Then by comparing coefficients, K, = 3, K; = 6.

Recall, Y(s) = G(s)U(s). If U(s) =1, then Y(s) = G(s) or y(t) = g(t).
What input has Laplace transform of 17

Motivation: 1 = 1s (ie. derivative of step function)

|..2_ LI B B | TT T 17T L L TT T T T[T rrIrT

4 - —
02 :— —]
aof -
0.2 IR T I
2 1 a 1 2
We can approximate this as a function
0 t<a
gar.a(t) = Z—j‘f a<t<a+ AT
1 t>a+ AT

Then as AT — 0,a — 0, we approach a step function.
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We'll consider the derivative to this approximation f(t) = ¢'(¢).

0 t<a

f)ara(t) =4 77 a<t<a+AT

0 t>a+ AT

1 1
fAT,a(t) = Eu(t — CL) — EU(t —a — AT)
e—at 6—(a+AT)s
Faro(s) = —
aTa(s) sAT sAT
1 — 67(AT)S
F “ _ p,—at
arals) = e sAT
Consider the limit as AT — 0,
L(]_ _ efATs)
lim Fara(s) = lim e 28T (Using L’Hopital’s Rule)
AT—0 ’ AT—0 _9 ¢
AT
. s Se—ATs
T ATmo© s
— e*CLS

We define 0(t — a) = limar—o fara(t). This is called the Dirac Delta function. Note that
the Dirac delta function is not an actual function since it has a non-zero integral with only
one point of discontinuity. The integral of this signal is called an impulse.

We have L{0(t — a)} = limar—0 Fara(s) = e~ . In particular, £{6(t)} = 1.

L2 RSN BAREAS AL T ]
1.0 — .
0.8F .
0.6 E— -
:
0.2F B
0.0f o
020 b b b :
2 -1 0 1 2
We represent this graphically as X

Properties:
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/Oooé(t—a)dtzl

/0 " F0)8(t — a)dt = f(a)

2. Filtering property:

Proof 5.11 -
/0 F(H8(t — a)dt = f(a)

By the Mean Value Theorem, there exists ¢, such that f(t) = faa+AT f(t)dt.

/OOO F®3(t = a)dt = Jim_ /Ooo f(t)é[u(t —a) —u(t — (a + AT)))dt

%
a+AT

“Aar ), SO

) 1
= Al%go AT (to)AT (Mean Value Theorem)
= f(a) (as tg — a when AT — 0)

O

Now recall Y (s) = G(s)U(s). If U(s) =1 (in other words, an impulse), then Y (s) = G(s)
or taking the inverse Laplace transform, y(t) = g(t) is called the impulse response.

If there are zero initial conditions and u(t) = §(¢t — a), then the resulting response is the
inverse Laplace transform of G(s)e™* or the impulse response time shifted by a to give

g(t — a)H(t — a) where we use H(t — a) for the Heaviside function instead of u to avoid
confusion with the input.

In practice, we often hit a linear time invariant system with an impulse to check this impulse
response. We need to normalize so that the integral is 1. This gives us g(t).

Recall Y(s) = G(s)U(s). Can we find y(t) from g(t) for any arbitrary u(t)? We need the
concept of convolution.

5.11 Convolution

Theorem 5.8 (Convolution Theorem,)

Let u(t) and g(t) satisfy the conditions that guarantee the existence of the Laplace transforms.
Then, the product of their transforms Y (s) = G(s)U(s) is the transform of the convolution
of g(t) and u(t) which is



Proof 5.12 Our system is linear therefore superposition holds. If we have a u(t) made of
Diract delta functions, we can sum up time shifted g(¢) to get the response.

Let far(t — nAT) generate an impulse response at nAT.
For any arbitrary input,

o)

y(t) ~ Z w(nAT) far(t — nAT)AT

y(t) =Y u(nAT)AT[g(t — nAT)H(t — nAT))

n=0

n/

= Zu(nAT)g(t —nAT)AT (H(t —nAT) = 0 when nAT > t)

n=0
where n' is the smallest n such that nAT > t.

As AT — 0, we get a Riemann integral

Proof 5.13

F()G(s) = ( /0 s f(T)dT) ( /0 N e_sug(u)du)
_ /0 h ( / T gt f(r)g(u)du) dr

Substituting ¢ = 7 + u and noting that 7 is fixed in the interior integral so du = dt,
:/ / e f(r)g(t — 7)dtdr
/ / e f(r)g(t — T)H(t — 7)dtdr
/ / e S f(T)g(t — T)H(t — 7)drdt
/ (/ e f(1)g (t—T)dT) dt
0
e (/ f(r)gt—r dT) dt
0
e [ it - rar
0
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5.11.1 Properties

1. Commutative
fxg=gxf

2. Distributive
fr(g+h)=fxg+fx*h

3. Associative
(fxg)xh=fx*(gxh)

4. Zero Element
Oxf=f*x0=0

5. Identity
fxd=dxf=f

Proof 5.14 Proofs for all of these can be done in the Laplace domain using the convolution
theorem.

We'll show f*(g+h)=fxg+ f=*h.

LAf * (g + )} = L{FYL{f + h}
= L{f} £{g} + LS} L{R}
frlg+h) =Ffrg+fh

0

The convolution integral can be visualized as reflecting one function and taking the weighted
sum as the function is translated from —oo to oo.
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t t
1 2 3 4

1 2 3 4 5 6 5 6
f(7) 9(=)
T T
1 2 3 4 5 6 -5 —4 -3 -2 —1

gt—1)

&
t—4 t—3 t—2 t—1 1 2 3 4 5 6

t—4 t—3 t—21¢t-12 3 4 5 6

5.12 Simultaneous Differential Equations

There are times when two or more ODEs are coupled together. Suppose we have a circuit
with the vollowing ODEs

diy diy .
S+ 22 1 560, + 40i5 = 400
7 + 7 + 90071 + 4019

"

2 = 81+ 10, = 0

We can use Laplace transforms and since we solve using algebra, we have a system of n
equations and n unknown

_ 400

(s +56)11(s) + (s +40)15(s) .

—8I1(s) + (s +10)I5(s) =0
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Solving using algebra,
3200
I =
2(5) s(s+59.1)(s + 14.9)
io(t) = 3.64 + 1.22¢ 991t _ 4 86149t

Similarly
il(t) =4.55 — 7,49@759” + 2'986714.91‘/

6 Fourier Series

6.1 Useful Concepts
If a function is periodic with period p

ft) = f(t+p)

A function periodic with period p is also periodic with period 2p, 3p, etc. The smallest such
period p is called the fundamental period. Note that this exntends from —oo to oco.

An even function is symmetric about x = 0 such that f(—z) = f(z).

An odd function is antisymmetric about x = 0 such that f(—z) = —f(z).

Properties

1. even + even = even
2. even X even = even
3. odd + odd = odd
4. odd x odd = even

5. even X odd = odd

Theorem 6.1

4 )2y f@)de  f(x) is even
/—a fle)de = {O f(z) is odd

The following functions all have period 2L

T 2rx mnrr . TX . 27X . mnxT
1,COST,COST,...,COST,SIHT,SIHT,...,Sln 7
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Then the following also has period 2L

n T n 2rx - mnx s T s 2rx b mnx
— —t...tan, n — in—+...+b,,sin
aop+a; cos 7 Qo COS 7 Qy,, COS 7 18 7 98 7 S

+..

[e.e]
nww nww
= ap +Z [ancos— +b,, sin ——
— L L

If this converges, this will be periodic with period 2L. We’ll ignore convergence since
proofs are extremely involved.

Analagous
Theorem 6.2 (Orthogonality Properties) to
L
mmx nmTx vector
—dr =0
/Lcos 7 cos—dz n=+m dot
L mrx | nrx prod-
. sin —— sin de =0 n#m ucts
L
/ cos mre sin mdw =0 Vn,m
_I L L

We can use the following properties to prove the Orthogonality properties
1
sinzsiny = 5(— cos(z + y) + cos(x — y))
1
COS T COSY = i(cos(x +y) + cos(z — y))

1
sinz cosy = §(sin(x +y) + sin(x — y))

Proof 6.1
/L mnx mr:cd /L 1 nwr +mnx L nwTr — MTL d
cos cos —dxr = - cos ——— +cos ——— | dz
I L L .2 L L
1 L . (n+m)rx L . (n—m)mx ‘L
== sin sin
2 \nm+mm L nmw — mm L L
=0 (since sinnm = 0 for all integers n)
O
Proof 6.2
/L . omrzx . mra:d /Ll mrx+m7rx+ nNTL — MTL d
sin sin —dx = — [ — cos CoS T
I L L 2 L L
1 L . (n+m)mx L . (n—m)mx ‘L
= — sin — sin
2 \nm+mm L nmw — mim L L
=0 (since sinnm = 0 for all integers n)
O
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Proof 6.3

L mnx . NTx 1 (Y (. nrz+mrx . NI — MTX
cos sin —dx = — sin -+ sin dx

I L L 2/ L L
= (since sin is an odd function)
OJ
Theorem 6.3
/ L o NTTT
cos? — =T
_I L
L
/ sin? nrr L
L L
Proof 6.4

L L

1 2
/ cos? T _ —/ <cos nre + 1) dx

_I L 2 ). L

1| L . 2n7mx L
= — |——sin

2 | 2nm L L
L

6.2 Fourier Series

If the function f(x) we are trying to represent is periodic,

—ao—i—z [ancos + b, sin?]

This is the Fourier series. We will assume that the equality holds and that we can inter-
change an integration and an infinite summation (not necessarily the case).

We can find coefficients using integration. To find a,,, multiply by cos ™F* and integrate

from —L to L

L L
/ f(z) cos m;rx dx = /_L ap Cos mL dx + Z an cos mgx cos nz +0b,, cos mgx sin ?

7 ~~

S

vV
Vv .
0 by orthogonality when n=0 0 except for n=m 0 by orthogonality

= La,,

1 [t mnx
—Z/_Lf(:v)cos 7 dx
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For ag, simply integrate from —L to L (we are multiplying by cos0 = 1).

L L St
nmx . nmx
f(z)dx = ag + E an, cos —— +b,, sin <
—L —L n=1 ——— ———
0 by orthogonality when n=0 odd function
= 2LCLQ

1 /L
= — d
ap QL/Lf(:E) L

Note that this is the average value of the function. You can often “eyeball” this.

mnx

For b,, we similarly multiply by sin and integrate both sides from —L to L

L
L L o)
/_L f(z)sin m;m do = /_L ap sin mzx dx + ; [an sin mzrx cos % + b, sin m;m: sin ?]
= b, L

1 L
by, = Z/_L f(z)sin m;m:dx

The coefficients are called the Fourier coefficients and the resulting summation is the Fourier
Series.

Theorem 6.4 Let f be 2L periodic and let f and f' be piecewise continuous on the interval

from —L to L. Then the Fourier Series converges to f(x) at every point of x where f is

w where discontinuous.

continuous and to the mean value

Recall, f(z) is piecewise continuous if it has right and left hand limits that are finite.

Example 6.1 Consider the following function, periodic with period 27

f(x)—{_k —nr<x<0

k O<z<m

The period is 27 so L = w. We'll solve for the coefficients

aozi/jf(x)da::()

since it is an odd function (or by eyeballing the average value).
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1 [~ nw
=— —d

7T/ f(x)cos 7z

1 0 T

— { ) cos(nx)dx +/ kcos(nx)d:p}

T 0

_1 { ksm na ksin na W}

T n o

0

Or we can notice that f(r) is odd and cos “F*
Now solve for b,

1 0 T
b, = — [/ —ksin(nx)dx +/ ksin(nm)dm}

7T - 0

_ 1 [kcosnx o jcosna W}
T n l-= n o

B 2k 1 Cosnm  COS —NT

onw 2 2
2k

—(1 — cosnm)

onw

cosnt is 1 when n is even and —1 when n is odd. Then

b _{@ n is odd

nm
0 n is even

So then we have

> sm 20 +1

2a+1

SRl
M

=0

q

Gibbs Phenomenon

Looking at the discontinuity as we add more harmonics.

|‘U»\ ,MWM\,\W\,\J\‘|'|

[\/W\/\I Fa\ s

" 'm c

' \ «' | \ |
|

1
(smx+ —sin 3z + gsm5x+ )

-

\/\f \/\f\f\/\j wwwwmj | |

Using 5 harmonics Using 25 harmonics
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Notice that the overshoot narrows but does not go down. We always have an overshoot.

Theorem 6.5 A Fourier series of an even function of period 2L is a Fourier Cosine series

and

/ f(z) cos wdm

Proof 6.5 cos "7 is even and sin 7 is odd. So f(z)cos “F* is even and f(x)sin “F* is odd.

1 (L
= i/_Lf(x)dx
1 L
_z/o f(x)dx
L
:l/ f(x)coswda:

/ f(z) cos @d:c

/ f(z)sin @dm

Theorem 6.6 A Fourier series of an odd function of period 2L is a Fourier sine series

and the coefficients are

Example 6.2 The Sawtooth function
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Let f(z) = 2, —m < < 7 and be periodic with period 27. f(z) is odd so ag = 0 and a,, = 0.
Now we’ll solve for b,
b, = —/ rsinnz dx
0
2 (Sinnx —nx Cosnx)

™

0

Then

n

flz) = QZ (=1" sin nx

Example 6.3 Consider the previous function shifted by 0.5 to the right. That is, f(x) =
z—05—7+05<z<7m4+0.5.

We can let 2/ = x — 0.5 and find the Fourier series with respect to 2. Then substitute

2’ = x — 0.5 to get the Fourier series with respect to .

And for all f(z) periodic with period 2L, any interval (xg, z¢ + 2L) can be used.
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6.3 Complex Fourier Series

We can write rewrite our Fourier series as

M 140 i0Me

i
o

where a,, = a_,, and b,

Then we have

where

Now we also have

Then

If we let ¢,, = a,, —

r nmwx ‘b mrx}
@y, COS —— sin ——
L L L
[a,, nmx N bn mrx_ N i [a,, nwx N b, . nmx
— €08 —— + — sin —— — €08 —— + — sin ——
| 2 L 2 L | ~ | 2 L 2 L
[a, o8 nmwx N b, . nra | N i [a_, cos —NTx N b_, < —NTx
— —— + —sin — — — sin
| 2 L 2 L | — | 2 L 2 L
[a, nmz b, . nrz] N f (a, nrw N b, . nrw
— €0S —— + — sin —— — €08 —— + — sin ——
| 2 L 2 L | — | 2 L 2 L
= —b_,, since cos is even and sin is odd.
> nmwx nmwx
f(x) n:z_:oo [a cos — + by, sin 7
1/Lf() mm:d 4 /f ,mrxd
Ay = — x) cos —dx and b, sm—x
2L |, L
N inmTT + e*izﬂ'z d ‘ N einwa . e*irgrrz
cos = and sin =
L 2 21
o0 ezngrac + e*izﬂz ein% N e*izfrz
=3 [ K ]
=, [a, —ib, e >, [a, +ib, o
— L - e L
Pl P
> =
= 2 2
= Z (a, — zbn)emffx (since a, = a_p, b, = —by)
b, we have
)= 3

n=—oo

39



= a, — b,
Cn / f(x cos—dx—/ flx zsm—
cn:ﬁ/_Lf(x)e L dx

Note that ¢, and c_,, are complex conjugates. Also €”* and e~
Therefore the +|n| and —|n| terms are complex conjugates.

ne T are complex conjugates.

Example 6.4 Find the Fourier series for a periodic function f defined by f(x) = e* on
—m<x<T.

1 7r znwx
Cp = —  dx
2 J_,
1 4 -
_ = ex(l—m)dx
2 J_,
1 1 -
_ (1—in)z
2r1 — ine —r
1 1 —inmT T tnmw _—T
S ori i e
Notice that €™ = e~ = (—1)"
1 1
= — -1 n(,m _ =T
¢ 2r1 — m( ) (L/e—/)

2sinh 7
sinh L1 4in

S—C

T 1+n2

Then

sinh 7 L1+
fla) = > (1) ¢

6.4 Amplitude Spectrum

The Fourier series is helpful in finding how much signal there is at each frequency.

The plots are done using real or complex representation, but usually the complex.




i [

and let wy = 7 (the fundamental frequency

It turns out that the power at each frequency is given by |co|? for the constant component
and |c_,|* + |cn|* = 2|c,|? for the nth component. This is Parseval’s Theorem.

1 Cc+T
Py [ 1wPa= Y e

C

6.5 Fourier Integral

Now if the signal is aperiodic. For example,

0 -L<zx<-1
flz)=121 —-1<z<1

0 1<z<L
Then we have a Fourier Cosine Series
1 2sin 2
= 7 bn — 07 n — L
o L “ nmw

What happens as L — oo? If we let w, = “F then w, — 0. So we have more points
in the amplitude spectrum that are more densely packed. In other words, we approach a
continuum.

£ (0 Amplitude Soeclrumn

mgﬂjjo;r\n

e L«uiuon,

va
-
-
-
-
-
pa
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Now,

0 =57 [ v 3 [eostons) [ o) costenao +sinans [ fufo)sinteni

n=1

Let Aw = w, 1 — w,. Then

(n+)m nr 7
L L L
I Aw
L
Assume f x)|dz is finite (absolutely integrable). Then the first term approaches 0 as
L approaches Q.
1 & L L
fo=— Z [cos(wnx)/ fr(v) cos(wnv)dv + sinwna;/ fr() sin(w,v)dv | Aw
™ —-L —L
n=1
This is a Reimann sum so we have
1 e’} L L
fr= —/ Cos(wx)/ f(v) Cos(wv)dv—i—sinwna:/ f(w) sin(wv)dv | dw
T Jo ~L ~L
A?:;) B?:J)

Theorem 6.7 If f(z) is piecewise continuous m every finite interval and has a right hand
and left hand derwative at every point, and fo (x)|dx < oo, then f(x) can be represented

by
fo(x) = /0 [A(w) cos(wz) + B(w) sin(wx)]dw

where A(w) = £ [7_ f(v) cos(wv)dv and B(w) =+ [*°_ f(v) sin(wv)dv

fla_)+f(@s)

At each point where f(x) is discontinuous, then f(x) = 5

Note that the theorem does not require that the function be periodic.

When finding the coefficients, the same principle applies in recognizing even and odd func-
tions. That is, odd functions only involve B(w) and even functions only involve A(w).

The Gibbs phenomenon also still holds at discontinuities. The peak narrows as L — oo.

Example 6.5 Consider the function

ﬂ@:{1-4<;<1

0 otherwise
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This is an even function so B(w) = 0. Now consider A(w)

Alw) = %/_00 f(v) cos(wv)dv

_2 /00 f(v) cos(wv) dv
T™Jo SN———
2

even

™

1
= —/ cos(wv)dv
0

~ 2sin(wo) ‘1

W
2sinw

0

W

Then .
sin w

dw

fla) =2 [ costn

™ w

Note that at x = 1, —1 the Fourier integral converges to %

For this example, instead of integrating to infinity, let’s integrate to L. The approximation

is
2 [t sin w
fL(x):—/ cosw dw
T Jo w

As L — oo, we get closer and closer to the square function. This is the Gibbs phenomenon.
It also happens at discontinuities for Fourier integrals.

Now, we’ll substitute the complex exponential for the sin and cos terms

f(x):/ Aw) e By g
o L 2 2
1A — 3 . )
[ A B e A ],
; 2 >
—_— —_——
C(w) C(w)
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where
Clw) = % [/OO f(v) coswv dv — i/oo f(v) sinwo dv]

Clw) = % /_ f(v) (coswv —isinwv) dv

-
e—iwv

Therefore

flz) = /_OO C(w)e™*dw where C(w) = % /_00 fv)e ™ dvy

Example 6.6
f(a) =z

The function is continuous and odd. Is it absolutely integrable ([ |f(x)|dz is bounded)?

/_00 |f(x)|de = /—oo°° |z]e” 1! da

even

= 2/ ze *dx
0

=2

Then f(z) is bounded so we can have a complex Fourier integral. Now we solve for C(w).

1 [~ ’
C(w) —/ tete=tay

T on .
1 [ : 1 [ :

= — tete @t + — te te Wt
21 J_ 2m Jo

B 21w

(W)

Then 0; o
Qje_lxl [ p— —e’thdw

T Jooo (14 w?)?

6.6 Fourier Transform

This leads to the Fourier Transform with a reshuffling of constants.

Given that a function f is piecewise continuous on [—L, L] for any L.
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Suppose [~ _|f(t)|dt (f(¢)] is absolutely integrable). The Fourier transform of f is
FL) = flo) = [ soeat
And the inverse Fourier Transform is
F0) = 5 [ Flwreiu = 1 )

The Fourier transform gives us an indication of the “amount of signal” at any frequency w.
The amplitude spectrum is a graph of |F'(w)| vs w.

The aboslutely integrable conditions rules out a number of functions (eg. z, 2, ¢, sinwt).
In practice, we look at finite signals with a start and end. Piecewise continuous finite signals
are always absolutely integrable.

Example 6.7 Find the Fourier transform of f(t) = e * a > 0,¢t > 0.
Note that this is absolutely integrable, but we won’t show it here.

Flf(t)] = /_00 e " H(t)e ™!dt

_ / e—(a—l—iw)tdt
0

1
a+ iw

6.6.1 Properties

1. Linearity
Flaf(t) +bg(t)] = aF[f ()] + 0F[g(t)]

2. Time-shifting o
Flf(t —ty)] = e ™" f(w)

3. Frequency-shift property ' R
Fle™f(t)] = f(w — wo)

4. Differentiation Property

If f(z) is continuous and f () — 0 as |z| — oo and f'(x) is absolutely integrable, then

Flf'(x)] = iwf(w)
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5. Convolution Property )
Ff(x) » g(x)] = f(w)g(w)

6. Parseval’s Identity
o0 1 [e.e] .
| woka = o [ i)

This means we can look at power either in time or frequency.

6.6.2 Relationship with Laplace Transform

For Laplace, if f(¢) =0 for ¢t < 0 then
L0} = [ rwear
0
For Fourier, f(t) = 0 for t < 0 and absolutely integrable then

P} = [ " () H (et = / " Ftyeat

Then the two are identical except s = iw.

Example 6.8 f(t) = H(t — 1)e¢"Ygin(t — 1) for ¢ > 0. Find f(w).
This will be absolutely integrable. This is bounded by e~* which is absolutely integrable.

L{f(t)} = 58@
. i 1
Jw) = e e

7 Partial Differential Equations

These are differential equations of several variables.

The notation for partial derivates with z, ¢ has independent variables and u as the dependent
variable:
Ou(z,t) 0u(z,t) 0*u(z,t)
= uxxv —a _a,
0xOot

ax - ul‘? 81‘2 = uact

There usually is no set methodology to solve PDEs. Often we cannot solve exactly, but only
approximately.

We will only examine the three most common PDE forms seen by engineers:
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1. Laplace equation

~ QPu(z,y, z)  Pulw,y,z)  O*u(z,y, z)

2 _
Viu= 0x? Oy? 022 =0

Describes the steady state heat equation, electrostatic potential in a uniform dielectric,
steady state shape of an elastic membrane.

2. Wave Equation

0? t)  0? t) 0? t 1 0% 1
VQU — u(x7y7 Z? ) —l— u(‘%.?y? Z? ) _|_ u('%.?y?Z? ) I U(.CL’,y,Z )
0x? oy? 022 c? ot?

Describes propagation of electromagnetic waves, sound vibrations

3. Heat Equation

Pu@,y,zt)  Oul@yzt) Pulwyzt)  1u(zyzt)

2, __
V= = By? 822 K ot

Describes how heat is transferred from a hot area to a cold area by conduction.

The order of a PDE is the highest partial derivative appearing in the equation. For example,
all the above PDEs are second order.

The Laplacian operator is defined as

d? d? d?
= 2 = _— —_— —_—
L(u) =Vu= <dm2 + 0 + d752>

A linear PDE is one that satisfies
L(au+ pv) = aL(u) + B L(v)

where u(z,t) and v(z,t) are two functions. All the above examples are linear.

2 . .
Example 7.1 %g—? = 0 is non linear.

Homogeneous PDEs is where

L{u} =0
Non-homogeneous PDEs is where
L{u} = f(u)
for f(u) # 0.

A linear combination of solutions to a linear homogeneous PDE is also a solution. If uy, ..., u,,
are solutions to L{u} = 0 then so is Y., ¢;u; where ¢; are constants.
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Any solution to the nonhomogeneous PDE is called a particular solution. If L{u,} = f(u,)
then wu, is a particular solution.

If u is some solution to the linear homogeneous ODE, then the set of all solutions to the
nonhomogeneous linear PDE is u + u, for some v € S where S is the set of all solutions to
the homogeneous case.

There are constant coefficient linear PDEs. There can also be systems of PDEs. We will
only look at the three examples, however. We will also not look at modelling.

We often cannot find ALL the solutions of the linear homogeneous ODE. In some cases,
there will be an infinite number of linearly independent solutions. We have no guarantee
that these are ALL of the solutions but if they allow us to satisfy the initial conditions and
boundary conditions, everything still works practically.

7.1 Classification of Second Order Linear PDEs

We'll consider the case when there are only two independent variables. Second order linear

PDEs take the form of 92 e pY
U u u
A B C D=0
o2 Vonay oy

where A, B, C' are functions of x,y and D can be a function of z,y, u

ou ou
’ 9z Oz

1. Parabolic if B> — AC =0
For example, the heat equation is parabolic. If we hold y and z constant,
Plpy = Uy

y in above
Then A=0a% B=0,C =0so B> — AC =0.
2. Hyperbolic if B2 — AC >0

For example the wave equation is hyperbolic. If we hold y and z constant,

2
C Uggy = Ut

Then A=c*,B=0,C=—1s0 B?— AC = > 0.
3. Elliptic if B> — AC <0

For example, the Laplace Equation is elliptic. If we hold z constant,
Uy + Uyy = 0

Then A=1,B=0,C =1s0o B?— AC = -1 <0.
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7.2 Wave Equation

In general, the wave eqaution is
AEV3iu = uy

where ¢ is the speed of propagation.

Let’s consider a simpler example which is one dimensional. Let us consider a vibrating string
where the speed of propagation is given by

2 _
CUgy = Ut

As an aside, the speed of propagation is ¢ = \/% where T is the tension and p is the linear

mass density from first year physics.

We will solve for u for 0 < x < m. We need conditions at both these ends. These are called
the boundary conditions. Assume the string is fixed at either end,

u(0,t) = 0,u(m,t) =0

We also need initial conditions. Suppose the string starts at rest with the following

condition.
T 0<zr<i
u(z,0) = - 2
T—x g <zx<mT

For exam, when solving PDEs we should state
1. Picture of System
2. Equation

3. Boundary Condition

4. Initial Conditions

A trivial solution of this is u(x,t) = 0 which satisfies the boundary conditions but not the
initial conditions.

To solve we use separation of variables and let:

u(z,t) = X(x)T(t)

Then differentiating,

Uz = X" (2)T(t)
ut = X (2)T"(t)
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So substituting into our wave equation,

X"(2)T(t)c* = X (2)T"(t)
Xoo _ Tu _
X T

Since we have a function of z equal to A and a function of ¢ equal to A\, A must be a constant.

This can now be written as

Ty = AT
Ty — AT =0
Xow = 2AX
Xpw —AX =0
Also note our boundary conditions are u(0,t) = wu(m,t) = 0. Then substituting for wu,

X(0)T'(t) = X(m)T(t) =0 so

The X equation is second order. Depending on the value of A\, there are three cases:

1. A=0
From X, —AX =0, X,, =0:

X(x)=Az+ B
Our boundary conditions give
X(0)=0
0A+B =0
B =0X(m) =0

TA+B=0
So A= B =0. Then X(z) =0 so u(z,t) = 07(t) = 0. This is a trivial solution so we
ignore it.

2.0>0

We have X,, — AX = 0. Solving the characteristic equation gives roots of £v/\:

X(z) = AeV™ 4 Be V™
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Our boundary conditions give

X(0) =0
A+B=0
X(m)=0

AeVre + Be~VA® —
So A = B =0. This is a trivial solution so we discard it.

. A<O0
As before, our characteristic equation gives roots of £v/\ = +v/—\i.

X(z) = Asin(—v/—=\z) 4+ B cos(—v—\x)

The our boundary conditions give

X(0)=0
0=0A+1B

B=0

X(m)=0

Asin(v/=Ar) =0

Since A is arbitrary, we know sin(yv/—Am = 0 so v/—Am = nx for positive integers n.

Then
n=v-\

Therefore we have
X, (x) = A, sin(nx)

Now for the last case, we have a nontrivial solution. Let’s use that to solve the T
equations.

We have —\ = n? so from T}y — \c*T = 0 above
Ty +n2c*T, =0
so we have roots +nci if we solve the characteristic equation. Then

T, = Cysin(nct) + D, cos(nct)

So for each positive integer n,

X (2)T,(z) = A, sin(nx)[C,, sin(nct) + D, cos(nct)]
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7.3

Then we have u from the infinite summation

u(z,t) = Z[En sin(nx) sin(nct) + F, sin(nz) cos(nct)]

n=1

We have two initial conditions: the profile starts at rest and the initial position.

u(z,0) =0 and u(z,0) = {;Er—m zig;;i
Using the first initial condition,
uw(z,0) = i[E" sin(nx) cos(nct)ne — F, sin(nz) sin(nct)nc o
n=1
0= io: E, sin(nx)nc
B0

Then .
u(z,t) = Z F,, sin(nx) cos(nct)

n=1

From the second initial condition,
o)
u(z,0) = Z F, sin(nx)
n=1
We can solve the Fourier series to obtain u(x,t).

Laplace Equation

u(z,y) is the steady state temperature in a 2-D environment. The Laplace Equation gives

us

Ugg + Uyy =0

We’ll solve for the temperature in an infinite bar in the x direction and existing from 0 <
y <.

Our boundary conditions are u(z,7) = 0, u(x,0) = 0 and u(z,y) = 0 as z — 0.

Our initial conditions are u(0,y) = y* — 7y.
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We'll assume
u(z,y) = F(z)G(y)
SO Ugy = FyG and u,, = F'G,,. Then substituting into our Laplace equation,

FuuG + FGy, =0
sz o ny

Then for some constant o,

Fop —oF =0and Gy, —0G =0

With our boundary conditions,

0)
0)
)
)

u(z,0) =0= F(z)G(
(

@

u(z,m)=0= F(x)G(m

(
(m

Q
I
o o o o

We'll solve for GG first.

When o =0,
Gy=0=G=Ay+B=0

And our boundary conditions give us A = B = 0 so discard this.

Now consider when o < 0
G(y) = Ae¥V™ 4+ Be V™

Using our boundary conditions, A = B = 0 so discard also.

Consider when o > 0. We have complex roots at 4+/o7i.
G(y) = Acos(y/ay) + Bsin(v/oy)

Our boundary conditions give

G(0)=0=14+0B=0

A=0
G(m) = 0= Bsin(y/om) =0
Vo=n (for positive integers n)

Then for positive integers n,
G, (y) = By sin(ny)
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Now, F,

nxr

n*F, = 0 for n = 1,2, 3.... There are two real roots to the CE at £n. So
F.(x) = Cne"™ + D,e ™
Therefore

un(z,y) = Fo(2)Gn(y)
= (C,,e™ + D,e ") (B, sin ny)

Let u(x,y) = > o2 (Cre™ 4+ Dpe ™) (B, sinny). Now lim, . u(z,y) = 0 so C,, = 0.

n=1
Therefore .
x,y) = Z N,e ™ sinny
n=1

where N, = D, B,,.

Look at x =0
0,y) =y(y—m)
= Z N, sinny e
n=1
= Z N, sin ny
n=1
for 0 <y < m. This is a Fourier sine series.
2 [T .
N, = —/ y(y — m)sinny dy
T Jo
4
= 1" -1
— )

n is odd
n is even

Ze @Dz in((2i — 1)y)

=1

Then we have
-8
(20 — 1)3

Example 7.2 Heat equation on a rod going from 0 to 7 insulated on the ends so that g—z =0
for = 0, 7. u(x,t) is the temperature. The heat equation gives

QPu,r =

For simplicity, let & = 1 (« is normally related to the heat conductance). Assumute an
initial temperature distribution of u(z,0) = sinz for 0 < z < 7.
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Assume separable so u = F(z)G(t). Then v,z = F,,G and u; = FG;.

meG:FGt
Fx.T_Gt_
Foa )

where A is a constant. Therefore F,, — AF =0 and G; — A\G = 0.
Remember u,(0,t) = u,(m,t) = 0 so F,(0) = F,(m) = 0. Then we solve for F'(x) first.

If A =0 then F,, =0so F(x) = Az+ B. Then F,(z) = A. Since F,(0) = F,(7r) =0, A=0.
B is arbitrary so F(x) = B. As well G, = 0 so G(t) is a constant. Then for A = 0, we get a
constant (u(x,t) = C).

If A > 0 we have
F(z) = AeV?* 4 Be~V®
F.(z) = AV AV — By he Ve

Substituting into boundary condition, we will find that A = B = 0. This is the trivial
solution so discard.

If A < 0 we get complex roots

F(z) = AcosV—Ax + BsinvV—A\z
F.(x) = —AV—=AsinvV—\x + BV —AcosV—Az

Now substituting our boundary conditions,

F,(0) = BY—=X\
F.0)=0
B=0
F,(m) = —Av/=\sin \/\—?
F,(7) = 0n® ” =-A

Look at Gy — MG = 0 or G,,; + n*G;0.
Go(t) = Cpe™™

u(z,t) = dy + Z d, cosnz e

n=1
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This is a cosine series. The last thing is to consider the initial conditions.

u(z, t)‘

t=0

oo
2
=dy+ E d,cosnz e ™!
- t=0

n=

o0
= sinxzdy + E d,, cosnx

n=1

Note that dj is the average value

1 (7 2
doz—/ sinx doe = —
T Jo

T
Also
2
d, = —/ sin z cosnx dx
™ Jo
G
B 2cosmn+1
1 1-—n?
Then we have
2 =2 2 )
u(z,t) = - + L T cos(2ixz)e” 307

o6

=sinx
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