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1 Some Concepts

1.1 Binomial Theorem

(1 + x)n =
n∑
k=0

(
n

k

)
xk

1.2 Product of Polynomial

A(x)B(x) =

(∑
i≥0

aix
i

)(∑
j≥0

bjx
j

)
=
∑
i≥0

∑
j≥0

aibjx
i+j, now let k = i and n = i+ j

=
∑
n≥0

(
n∑
k≥0

akbn−k

)
xn

Or equivalently

[xn]A(x)B(x) =
n∑
k≥0

akbn−k

1.3 Sum Lemma

If S is a set with weight function w and A,B are sets so that A ∩ B = ∅, A ∪ B = S, then
ΦS(x) = ΦA(x) + ΦB(x).

1.4 Product Lemma

If A,B be sets with weight function α, β respectively. Then ΦA(x)ΦB(x) = ΦS(x) where
S = A×B and w(a, b) = α(a) + β(b) is the weight function on S.

1.5 Negative Binomial Theorem

(1− x)−k =
∑
n≥0

(
n+ k − 1

k − 1

)
xn

equivalently

[xn](1− x)−k =

(
n+ k − 1

k − 1

)
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2 Counting Combinations

2.1 Intro using Fruit

In how many ways can you eat n pieces of fruit given that you must eat

• at most 5 apples

• at least 3 bananas

• an even number of cherries

The answer is [xn] (1 + x+ x2 + x3 + x4 + x5)︸ ︷︷ ︸
apples

(x3 + x4 + x5 + ...)︸ ︷︷ ︸
bananas

(1 + x2 + x4 + ...)︸ ︷︷ ︸
cherries

.

= [xn]

(
1− x6

1− x

)(
x3

1− x

)(
1

1− x2

)
= [xn]

x3(1− x6)

(1− x)3(1 + x)

Counting problems involving multiple selections can be encoded as coefficients. We’ll now
make this formal.

2.2 Sum Lemma

If S is a set with weight function w and A,B are sets so that A ∩ B = ∅, A ∪ B = S, then
ΦS(x) = ΦA(x) + ΦB(x).

2.3 Product Lemma

If A,B be sets with weight function α, β respectively. Then ΦA(x)ΦB(x) = ΦS(x) where
S = A×B and w(a, b) = α(a) + β(b) is the weight function on S.

2.3.1 Example Proving Binomial Theorem

Let S = {subsets of [n]} and w(A) = |A| for A ∈ S. So

ΦS(x) =
∑
k≥0

(# elements of S of weight k) xk

=
∑
k≥0

(
n

k

)
xk
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We will show inductively that this is (1 + x)n.

Base case (1 + x)0 =
(

0
0

)
x0 is trivial. Suppose it is true for n− 1 with n ≥ 1.

Let T = {elements of S containing n} = {Y ∪ {n} : Y ⊆ [n− 1]} and
R = {elements of S not containing n} = {Y : Y ⊆ [n− 1]}. Clearly T ∩ R = ∅. So by the
Sum Lemma, ΦS(x) = ΦR(x) + ΦT (x).

ΦR(x) =
∑

Y⊆[n−1]

x|Y |

=
∑
k≥0

(
n− 1

k

)
xk

= (1 + x)n−1

ΦT (x) =
∑

Y⊆[n−1]

x|Y ∪{n}|

=
∑

Y⊆[n−1]

x|Y |+1

= x
∑

Y⊆[n−1]

x|Y |

= x(1 + x)n−1

So ΦS(x) = (1 + x)n−1 + x(1 + x)n−1 = (1− x)n.

2.4 Example with Fruit

For ≤ 5 apples, ≥ 3 blueberries and even number of cherries,

A = {0, 1, 2, 3, 4, 5}
B = {3, 4, 5, 6, ...}
C = {0, 2, 4, 6, ...}

ΦA(x) = 1 + x+ x2 + x3 + x4 + x5

=
1− x6

1− x
ΦB(x) = x3 + x4 + x5 + x6 + ...

=
x3

1− x
ΦC(x) = 1 + x2 + x4 + x6 + ...

=
1

1− x2
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So the Product Lemma gives ΦS(x) = ΦA(x)ΦB(x)ΦC(x) where S = A × B × C and
w(a, b, c) = w(a) + w(b) + w(c). Then the number of valid selections for n pieces of fruit is
[xn]ΦS(x).

[xn]ΦS(x) = [xn]ΦA(x)ΦB(x)ΦC(x)

= [xn]
1− x6

1− x
x3

1− x
1

1− x2

= [xn]
x3(1− x6)

(1− x)3(1 + x)

= [xn−3]
1− x6

(1− x)3(1 + x)

2.5 Example of Change for $1

Q: How many ways to make change for $1?

A change of $1 is a selection (a, b, c, d) ∈ (N0)4 such that 5a+ 10b+ 25c+ 100d = 100. Let

w1(a) = 5a

w2(b) = 10b

w3(c) = 25c

w4(d) = 100d

Φw
N4
0
(x) = Φw1

N0
(x)Φw2

N0
(x)Φw3

N0
(x)Φw4

N0
(x)

2.6 Negative Binomial Theorem

Prop:

(1− x)−k =
∑
n≥0

(
n+ k − 1

k − 1

)
xn

equivalently

[xn](1− x)−k =

(
n+ k − 1

k − 1

)
Proof:

[xn](1− x)k = [xn]

(
1

1− x

)k
= [xn] (1 + x+ x2 + ...)(1 + x+ x2 + ...)...(1 + x+ x2 + ...)︸ ︷︷ ︸

k times
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This coefficient is the number of solutions to a1 + a2 + ... + ak = n where ai ∈ N. We show
this with the product lemma. We have ΦN0(x) = 1 + x + x2 + x3 + ... with respect to the
weight function w(a) = a.

(1 + x+ x2 + ...)k = (ΦN0(x))k

= ΦS(x)

Where S = (N0)k and w = (a1, a2, ...ak) = a1 + a2 + ...+ ak.

Let T = {(a1, a2, ..., ak) ∈ Nk
0|a1 + a2 + ...+ ak = n} and

R = {Binary strings of length n+ k − 1 with exactly k − 1 ones}.
We know |T | = [xn](1− x)−k and |R| =

(
n+k−1
k−1

)
.

We define a bijection f : T → R by

f(a1, a2, ..., ak) = 0...0︸︷︷︸
a1

1 0...0︸︷︷︸
a2

1...1 0...0︸︷︷︸
ak

and it’s inverse by
f(0...0︸︷︷︸

a1

1 0...0︸︷︷︸
a2

1...1 0...0︸︷︷︸
ak

) = (b1, b2, ..., bk)

Clearly f and g are inverses so f is a bijection and |T | = |R|. �

We can use the negative binomial theorem to go between rational expressions and power
series.
eg.

(1 + 2x2)−5 =
∑
n≥0

(
n+ 4

4

)
(−2x2)n

=
∑
n≥0

(−2)n
(
n+ 4

4

)
x2n

2.7 Compositions

The ideas in the negative binomial theorem proof allude to a new type of combinatorial
object.

Let n ∈ N0, k ∈ N0. A composition of n into k parts is a k-tuple (a1, a2, ...ak) such that
a1 + a2 + ...+ ak = n and ai ∈ N.

Example. The compositions of 5 into 3 parts are (1, 1, 3), (1, 3, 1), (3, 1, 1, ), (1, 2, 2, ), (2, 1, 2, ), (2, 2, 1).
Note that order matters. Ignoring order, we have partitions which are much harder to work
with.

Prop.
There are

(
n−1
k−1

)
compositions of n with k parts.
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Proof.
Let S = {Compositions of n into k parts}, T = {solutions to a1 +a2 + ...+an with ai ∈ N0}.
f(a1, a2, ..., ak) = (a1− 1, a2− 1, ..., ak− 1) gives a bijection from S to T . By the material in
the proof earlier,

|T | =
(

(n− k + k − 1)

k − 1

)
|T | = |S| =

(
n− 1

k − 1

)
�

Prop.
The number of compositions of n into any number of parts is 2n−1.

Proof.
By previous proposition, the number is

∑
k≥1

(
n−1
k−1

)
= 2n−1 by the binomial theorem.

2.8 Restricted Compositions

Often we will need to compute the number of compositions of n with various restrictions on
the number of parts, or their sizes. The sum/product lemmas do this.

2.8.1 Small Parts

How many compositions of n have each part equal to 1 or 2.

• With k parts?

• With any number of parts?

Let S = {1, 2} and w(σ) = σ for each σ ∈ S. Then ΦS(x) = x+ x2.

Consider [xn]ΦS(x)k. By the product lemma, it is equal to the number of k-tuples (a1, a2, ..., ak) ∈
Sk with a1 + a2 + ...+ ak = n. So this is the number of compositions of n into k parts of size
1 or 2.

[xn]ΦS(x)k = [xn](x+ x2)k

= [xn]xk(1 + x)k

= [xn−k](1 + x)k

=

(
k

n− k

)
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So the number of compositions of n into k parts of size 1 or 2 is
(

k
n−k

)
. So the number of

compositions of n into any number of parts of size 1 or 2 is
∑

k≥0

(
k

n−k

)
.

Alternatively, the number of compositions of n into any number of parts of size 1 or 2 is∑
k≥0

[xn](x+ x2)k = [xn]
∑
k≥0

(x+ x2)k

= [xn]
1

1− x− x2

= nth Fibonacci number

2.8.2 Odd Parts

How many compositions of n have each part odd?

Let S = {1, 3, 5, 7, ...} and w(σ) = σ for each σ ∈ S.

ΦS(x) = x1 + x3 + x5 + x7 + ...

= x(1 + x2 + x4 + ...)

=
x

1− x2

Then the number of compositions of n into k odd parts is [xn]ΦS(x)k. So the number of
compositions of n into any number of odd parts is∑

k≥0

[xn]ΦS(x)k = [xn]
∑
k≥0

ΦS(x)k

= [xn]
1

1− ΦS(x)

= [xn]
1

1− x
1−x2

= [xn]
1− x2

1− x− x2

Let 1−x2
1−x−x2 = a0 + a1x+ a2x

2 + ...

Solving (1− x− x2)(a0 + a1x+ a2x
2 + ...) = 1− x2 we get

a0 = 1

a1 − a0 = 0

a2 − a1 − a0 = −1

ak − ak−1 − ak−2 = 0, k ≥ 3

9



Then a0 = 1, a1 = 1, a2 = 1 and ak = ak−1 + ak−2 for k ≥ 3. So the number of compositions
of n into odd parts is the (n− 1)th Fibonacci number.

2.8.3 Combinatorial Proof of Compositions of Size 1 and 2

Let An = {compositions of n into parts of size 1 or 2}. We need |An| = |An−1|+ |An−2|. Let
A′n = {compositions of n into parts of size 1 or 2 with last part 1}. Let A′′n = {compositions
of n into parts of size 1 or 2 with last part 2}.
Let f1 : A′n → An−1 be defined by f(a1, a2, ..., ak) = (a1, a2, ...ak−1. Its inverse is f−1

1 :
An−1 → A′n defined by f−1(b1, b2, ..., bk) = (b1, ..., bk, 1). A similar bijection can be found
between A′′n and An−2.

So since |An| = |A′n|+ |A′′n|, |An| = |An−1|+ |An−2|. �.

2.8.4 Combinatorial Proof of Odd Sized Compositions

Let Tn = {compositions of n into parts of odd size }. Clearly |T1| = |T2| = 1. To show that
Tn+1 is the nth Fibonacci number, it suffices to show that |Tn| = |Tn−1|+ |Tn−2| for n ≥ 3.

We do this by defining a bijection f between Tn and Tn−1 ∪ Tn−2.

T2 = {(1, 1)}
T3 = {(1, 1, 1), (3)}
T4 = {(1, 1, 1, 1), (1, 3), (3, 1)}
T5 = {(1, 1, 1, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (5)}

Let f : Tn → Tn−1 ∪ Tn−2 be defined by

f(a1, a2, ..., ak) =

{
(a1, a2, ..., ak−1) ak = 1

(a1, a2, ..., ak − 2) ak 6= 1

and g : Tn−1 ∪ Tn−2 → Tn be defined by

g(a1, a2, ..., ak) =

{
(a1, a2, ..., ak, 1) (a1, ..., ak) ∈ Tn−1

(a1, a2, ..., ak + 2) (a1, ..., ak) ∈ Tn− 2

Then g is the inverse of f . So f is a bijection and thus |Tn| = |Tn−1∪Tn−2 = |Tn−1|+ |Tn−2|.
�

2.8.5 Relationship between Above Compositions

Let Tn = {compositions of n into parts of odd size}. Let Sn = {compositions of n into parts
of size 1 or 2}. We’ll show that |Sn| = |Tn+1| by finding a bijection.

10



We have (1, 3, 7, 5, 9, 3, 3, 1, 3) ∈ T35 can be mapped to

( 1︸︷︷︸
1

, 2, 1︸︷︷︸
3

, 2, 2, 2, 1︸ ︷︷ ︸
7

, 2, 2, 1︸ ︷︷ ︸
5

, 2, 2, 2, 2, 1︸ ︷︷ ︸
9

, 2, 1︸︷︷︸
3

, 2, 1︸︷︷︸
3

, 1︸︷︷︸
1

, 2, 1︸︷︷︸
3

)

This is done by transforming each element in the composition as a 1 prefixed by the appro-
priate number of 2s.

However, this results in compositions that always end in 1. So we remove the final 1 to map
T35 to S34. This rule can be formally defined as a bijection so |Tn+1| = |Sn|. �

3 Binary Strings

A binary string of length k is a k-tuple (a1, ..., ak) where ai ∈ {0, 1}. Equivalently, a member
of {0, 1}k. We usually supress commas and brackets and write strings as a1a2...an.

If σ = s1s2...sj and τ = t1t2...tk then στ = s1s2...sjt1t2...tk. (concatenation)

We write l(σ) for the length of σ. So l(στ) = l(σ) + l(τ).

σk denotes σσ...σ︸ ︷︷ ︸
k times

and σ0 = ε.

If A,B are sets of strings then AB = {αβ : α ∈ A, β ∈ B}.
We also define Ak = AAA...A︸ ︷︷ ︸

k times

.

Example 3.1 {0, 1}7 = {strings of length 7}

A∗ = {ε} ∪ A ∪ A2 ∪ A3 ∪ ...

=
⋃
k≥0

Ak

A substring of s is a string b such that s = abc for some a, c.

A block of s is a maximal substring of s whose members are equal (ie. all 0 or 1).

3.1 Ambiguity

If each such string in A∗ can only be optained from A∗ in one way, then A∗ is unambiguous.
Other expressions can also be called ambiguous or unambiguous.

For example, {0, 00}{0, 00, 000} is ambiguous since 000 can be made in multiple ways. {0, 1}
is unambiguous. Also for any set A such that ε ∈ A, A∗ is ambiguous.
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Is {1}∗{{0}{0}∗{1}{1}∗}∗{0}∗ ambiguous? No. It is unambiguous but generates all possible
binary strings. We can decompose any string by taking all 1s in the front and 0s in the back
into {1}∗ and {0}∗. {{0}{0}∗{1}{1}∗}∗ captures blocks of 0s and 1s in the middle.

Another unambiguous expression generating all binary strings is {0, 1}∗. However, it is less
useful than the previous expression for counting problems.

3.2 Strings and Generating Series

Let S be a set of binary strings with w(σ) = length(σ). Then the number of strings of length
n in S is [xn]ΦS(x).

Theorem 3.1 If S = A ∪B unambiguously, then ΦS(x) = ΦA(x) + ΦB(x).

If S = AB unambiguously, then ΦS(x) = ΦA(x)ΦB(x).

If S = A∗ unambiguously, then ΦS(x) = 1
1−ΦS(x)

. Notice that ΦS(x) must have a zero
constant term, which agrees with the fact that A is ambiguous if it contains ε.

Example 3.2 Let S = {binary strings where each block of zero has even length}.
We know S = {00, 1}∗ unambiguously. Then the number k of strings of length n in S is

k = [xn]ΦS(x)

= [xn]
1

1− ΦA(x)

where A = {00, 1}. ΦA(x) = x + x2 so [xn]ΦS(x) = [xn] 1
1−x−x2 . Therefore the answer is the

nth Fibonacci number.

Example 3.3 Let S = {strings with exactly three blocks}.
We can decompose S as S = {{1}{1}∗{0}{0}∗{1}{1}∗}︸ ︷︷ ︸

A1

∪{{0}{0}∗{1}{1}∗{0}{0}∗}︸ ︷︷ ︸
A0

. That

is, S = {strings of the form 1...10...01...1} ∪ {strings of the form 0...01...10...0}.

ΦA1(x) = Φ{1}(x)Φ{1}∗(x)Φ{0}(x)Φ{0}∗(x)Φ{1}(x)Φ{1}∗(x)

= (x)

(
1

1− x

)
(x)

(
1

1− x

)
(x)

(
1

1− x

)
=

x3

(1− x)3

12



Similarly ΦA0(x) = x3

(1−x)3
.

ΦS(x) = ΦA0(x) + ΦA1(x)

=
2x3

(1− x)3

= 2x3
∑
n≥0

(
n+ 2

2

)
xn

So the number of elements in S of length n is 2
(
n−1

2

)
.

This makes sense intuitively since we are picking two positions where the string swaps be-
tween repeating 0 and repeating 1. And the string can either start with 0 or 1.

Example 3.4 Let S be the set of strings with all blocks with length ≥ 2.

Then S = (ε ∪ {00}0∗)({11}1∗{00}0∗)∗(ε ∪ {11}1∗).

ΦS(x) =

(
1 +

x2

1− x

)
1

1−
(
x2

1−x
x2

1−x

) (1 +
x2

1− x

)
=

(
1− x+ x2

1− x

)2
(1− x)2

(1− x)2 − x4

=
(1− x+ x2)2

(1− x)2 − x4

=
1− x+ x2

1− x− x2

Example 3.5 Let S be the set of strings where an even block of 0s cannot be followed by
an odd number of block of 1s.

S = 1∗
(
{0(00)∗11∗}︸ ︷︷ ︸

odd 0s

∪{00(00)∗11(11)∗}︸ ︷︷ ︸
even 0s

)∗
0∗

ΦS(x) =
1

1− x
1

1−
(

x
1−x2

x
1−x + x2

1−x2
x2

1−x2
) 1

1− x

=
(1 + x)2

x(1 + x2 + x3)

Example 3.6 Let S be the set of strings with no l consecutive 1s and no m consecutive 0s.

13



S = (0∗ \ {0m0∗})
[(
{11∗} \ {1l1∗}

)
({00∗} \ {0m0∗})

]∗ (
1∗ \ {1l1∗}

)
ΦS(x) =

(
1

1− x
− xm

1− x

) 1

1−
(

x
1−x −

xl

1−x

) (
x

1−x −
xm

1−x

)
( 1

1− x
− xl

1− x

)

=
1− xm − xl + xm+l

1− 2x+ xm+1 + xl+1 − xm+l
(after some algebra)

Considering l = 1,m = 1,

ΦS(x) =
1− 2x+ x2

1− 2x+ x2 + x2 − x2

= 1

This makes sense since only ε satisfies the constriants.

Considering l = 2,m = 2,

ΦS(x) =
1− 2x+ x4

1− 2x+ 2x3 − x4

=
(1− x2)2

(1− x2)(1− 2x+ x2)

=
1− x2

1− 2x+ x2

=
1 + x

1− x

Then we have,

1 + x = a0(1− x) + a1x(1− x) + a2x
2(1− x) + ...

a0 = 1

−a0 + a1 = 1⇒ a1 = 2

ai − ai−1 = 0⇒ ai+1 = ai∀i ≥ 2

This makes sense since we can have either ε, 0101...0101 or 1010...1010.

3.3 Recursive Decompositions

Example 3.7 Let S be the set of all strings.

S can be recursively described as S = {ε} ∪ S{0, 1}. We then have the generating function,

14



ΦS(x) = 1 + ΦS(x)(2x)

ΦS(x)− 2xΦS(x) = 1

ΦS(x) =
1

1− 2x

ΦS(x) =
∑
k≥0

2kxk

Which gives us that there are 2k binary strings of length k, as expected.

Example 3.8 Let S be the set of strings without 111.

S = {ε, 1, 11} ∪ S{0, 01, 011}
ΦS(x) = (1 + x+ x2) + ΦS(x)(x+ x2 + x3)

ΦS(x) =
1 + x+ x2

1− (x+ x2 + x3)

Example 3.9 How many strings are there with no 11101?

Let L be the set of strings without 11101. Let M be the set of strings with 11101 at the end
and not anywhere else in the string. Notice that L and M are disjoint.

L∪M = {ε}∪L{0, 1}. Adding a 0 or 1 won’t add 11101 in the middle of the string but can
add it to the end.

We need to find an expression for M . We don’t have M = L{11101} since {1110}{11101}
has two 11101 sequences.

L{11101} = M ∪M{1101}. This accounts for the fact that we can create a second 11101
sequence by appending to M .

ΦL(x) + ΦM(x) = 1 + 2xΦL(x) (from L ∪M = {ε} ∪ L{0, 1})
ΦL(x)x5 = ΦM(x) + ΦM(x)x4 (from L{11101} = M ∪M{1101})

ΦM(x) =
x5

1 + x4
ΦL(x)

ΦL(x) +
x5

1 + x4
ΦL(x) = 1 + 2xΦL(x) (substituting into first equation)

ΦL(x) =
1

1− 2x+ x5

1+x4

ΦL(x) =
1− x4

1− 2x− x4 + 3x5

15



4 Evaluating Coefficients of Generating Series

4.1 Partial Fractions

Example 4.1 Let f(x) = 1+3x
(1−x)(1+x)(1−2x)

f(x) =
A

1− x
+

B

1 + x
+

C

1− 2x

=
A(1 + x)(1− 2x) +B(1− x)(1− 2x) + C(1− x)(1 + x)

(1− x)(1 + x)(1− 2x)

A+B + C = 1

−A− C = 3

−2A+ 2B + C = 0

So we have A = −2, B = −1
3
, C = 1

3
. Substituting,

f(x) =
−2

1− x
− 1

3

1

1 + x
+

10

3

1

1− 2x

= −2
∑
k≥0

xk − 1

3

∑
k≥0

(−x)k +
10

3

∑
k≥0

(2x)k

=
∑
k≥0

(−2− 1

3
(−1)k +

10

3
2k)xk

Then [xn]f(x) = −2− 1
3
(−1)n + 10

3
2n.

Theorem 4.1 Let f, g be polynomials with deg(g) < deg(f) and f has constant term 1.
Then

g(x)

f(x)
=

h1(x)

(1−Θ1(x))m1
+

h2(x)

(1−Θ2(x))m2
+ ...+

hl(x)

(1−Θl(x))ml

with deg(hi) < mi ∀i ∈ [l].

4.2 Solving Recurrences

Theorem 4.2 Let p(x) and q(x) be polynomials with deg(p(x)) < deg(q(x)) and q(x) =
(1− θ1x)m1 ...(1− θkx)mk where m1,m2, ...,mk ∈ N and θ1, θ2, ..., θk ∈ C are distinct.

Then there exists polynomials A1(x), ..., Ak(x) with deg(A1) < m1, ..., deg(Ak) < mk such

that [xn]p(x)
q(x)

= A1(n)θn1 + ...+ Ak(n)θnk for all n ≥ 0.

Given a recurrence an = q1an−1+q2an−2...+qkan−k, n ≥ k and initial values for a0, a1, ..., ak−1,
determine an explicitly.

16



The characteristic polynomial for such a recurrence is 1− q1x− q2x
2− ...− qkxk. Equiv-

alently, it is 1 + q1x+ q2x
2 + ..+ qkx

k for an + q1an−1 + q2an−2...+ qkan−k = 0.

Theorem 4.3 Given such a recurrence, let A(x) = a0 + a1x+ a2x
2 + ...

Then A(x) = p(x)
q(x)

where q is the characteristic polynomial and deg(p) < k.

Proof 4.1 We need to show that A(x)q(x) is a polynomial with degree < k.

Let n ≥ k. Then

[xn]A(x)q(x) = [xn](a0 + a1x+ a2x
2 + ...)(1− q1x− q2x

2 − ...− qkxk)
= an − q1an−1 − q2an−2 − ...− qkan−k
= 0 (by definition of an)

So then deg(A(x)(q(x)) < k as required. �

Combining Theorem 4.2 and 4.3, we have

Theorem 4.4

an = [xn]A(x)

= [xn]
p(x)

q(x)

= A1(n)θn1 + ...+ Ak(n)θnk

where deg(p) < k, q is the characteristic polynomial, θ1, ...θj are distinct, m1, ...,mj ∈ N,
q(x) = (1− θ1x)m1 ...(1− θjx)mj and Ai is a polynomial of degree < mi.

Example 4.2 Solve the recurrence defined by

a0 = 1

a1 = −1

a2 = 17

an = an−1 + 8an−2 − 12an−3

The characteristic polynomial is

q(x) = 1− x− 8x2 + 12x3

= (1− 2x)2(1 + 3x)

So θ1 = 2, θ2 = −3 and m1 = 2,m2 = 1.

17



So we know that there are polynomials A1(x), A2(x) where deg(A1) < 2, deg(A2) < 1 and
an = A1(n)2n + A2(n)(−3)n for all n.

Let A1(x) = αx+ β and A2(x) = γ. Then an = (αn+ β)2n + γ(−3)n.

Using our values for a0, a1, a2, we have

a0 = 1 = β + γ
a1 = −1 = 2(α + β)− 3γ
a2 = 17 = 4(2α + β) + 9γ

α = 1, β = 0, γ = 1 is the only solution. So an = n2n + (−3)n.

4.3 Binary Trees

A binary tree is either empty or a root vertex together with a left child and a right child,
each of which is a (possibly empty) binary tree. This can be represented as (•, S1, S2).

Let T be the set of binary trees and w(S) = the number of vertices in S for each S ∈ T . We
can recursively define this as w(ε) = 0 and w(•, S1, S2) = 1 + w(S1) + w(S2).

Let T (x) = ΦT (x). Thus [xn]T (x) is the number of binary trees of n verticies.

We have T = {ε} ∪ {•} × T × T unambiguously. Then

ΦT (x) = Φ{ε}(x) + Φ{•}(x)ΦT (x)2

T (x) = 1 + xT (x)2

xT (x)2 − T (x) + 1 = 0

4x2T (x)2 − 4xT (x) + 4x = 0

(2xT (x)− 1)2 − 1 + 4x = 0

(1− 2xT (x))2 = 1− 4x

1− 2xT (x) = ±

(
1− 2

∑
n≥0

1

n+ 1

(
2n

n

)
xn+1

)
(by assignment 3)

We cannot have the negative version since the LHS and the RHS would have different
constant terms.

1− 2xT (x) = 1− 2
∑
n≥0

1

n+ 1

(
2n

n

)
xn+1

T (x) =
∑
n≥0

1

n+ 1

(
2n

n

)
xn

Therefore there are 1
n+1

(
2n
n

)
binary trees on n vertices.
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5 Graph Theory

• Given a circuit diagram, can we make a flat circuitboard without edges crossing?
(Planarity)

• How many colours are needed to colour each point in the plane so that no two points
at distance 1 get the same colour?

• How many ways are there to drive between two intersections in Manhattan’s one way
system?

• Given some SE students and coop positions, where each position is compatible with
only some students, can we give everyone a job?

S1

S2

S3

S4

S5

E1

E2

E3

E4

E5

Students Employers

• What is the cheapest way to get between two given cities?

5.1 Definitions

A graph is a pair (V,E) where V is a finite set and E is a set of unordered pairs of distinct
elements of V (ie. two-element subsets of V ).

We call the elements of V the vertices and the elements of E the edges.

Let G1 = (V1, E1) and G2 = (V2, E2). An isomorphism from G1 to G2 is a bijection
φ : V1 → V2 such that for all u, v ∈ V1, {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2.

If an isomorphism exists then G1 and G2 are isomorphic. Graphs are isomorphic if they
can be drawn in the same way.

We abbreviate an edge {u, v} by uv. If uv ∈ E then u and v are adjacent or neighbours.

The degree of a vertex is its number of neighbours.

An edge uv is incident with vertices u and v.

19



Example 5.1 Graphs A and B are the equal, although drawn differently. A and B are
isomorphic but are not the equal since the vertices are labelled differently.

b

a

f

e

d

c

2

1

6

5

4

3 b

a

f

e

d

c

A B C

Example 5.2 G1 and G3 are equal. G2 is not equal since the vertex names are different
but isomorphic to G1 and G3. G4 is not equal since it has an extra edge.

G1

a

b

c

d

e

f

G2

1

2

3

4

5

6

G3

a

b

c

d

e

f

G4

a

b

c

d

e

f

Theorem 5.1 Handshake Theorem

∑
v∈V

deg(v) = 2|E|

Proof 5.1 Let S = {(v, e) : v is incident with e}.

|S| =
∑
v∈V

(# edges incident with v)

=
∑
v∈V

deg(v)
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Also

|S| =
∑
e∈E

(# vertices incident with e)

= 2|E|

So
∑

v∈V deg(v) = 2|E|. �

Theorem 5.2 Every graph has an even number of verticies of odd degrees.

This follows from the previous theorem. Since
∑

v∈V deg(v) = 2|E| is even, deg(v)is odd for
an even number of v ∈ V .

5.2 Regular Graphs

A graph is regular if every vertex has the same degree. If this degree is d, then the graph
is called d-regular.

Example 5.3 The following table shows all d-regular 6 vertex graphs.
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0-regular

1-regular

2-regular

3-regular

4-regular

5-regular

5.3 Bipartite Graph

A bipartite graph is a graph G = (V,E) for which there exists sets A,B such that A∪B =
V,A ∩B = ∅ and every edge is incident with a vertex in A and a vertex in B.

(A,B) is a bipartition of G.

Example 5.4 A graph is bipartite if there is a 2-coloring for the graph. The following graph
is bipartite since it has a 2-coloring.
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5.4 Cycle

A k-cycle is a graph Ck = (V,E) so that V has an ordering v1, v2, ..., vk so that E =
{v1v2, v2v3, ..., vk−1vk, vkv1}. So a k-cycle has k vertices and k edges.

Theorem 5.3 A k-cycle is bipartite if and only if k is even.

Proof 5.2 If k is even, then ({v1, v3, v5, ..., vk−1}, {v2, v4, ...vk}) is a bipartition so Ck is
bipartite.

If k is odd, WLOG suppose (A,B) is a bipartition with v1 ∈ A. We show inductively that
vi ∈ A whenever i is odd. This is true for i = 1. If it is true for some vi then since vivi+1 ∈ E
and vi+1vi+2 ∈ E, we have vi+1 ∈ B and vi+2 ∈ A. By induction, vi ∈ A for all odd i. Thus
vk ∈ A and vi ∈ A. So since vkv1 ∈ E, (A,B) is not a bijection.

?

5.5 Complete Graph

A complete graph Kn is a graph G = (V,E) so that |V | = n and every pair of vertices is
adjacent. A complete graph has

(
n
2

)
edges.

Only K1 and K2 are bipartite.

A complete bipartite graph Km,n is a bipartite graph with bipartition (A,B) so that
every vertex in A is adjacent to every vertex in B and |A| = m and |B| = n. From this, we
get Km,n has mn edges.

K3,3

5.6 Cube

For n ≥ 0, an n-cube is a graph with V = {binary strings of length n} in which two vertices
are adjacent if they differ in exactly one position.
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ε 0

1

00

01 11

10 000

001 011

010

100

101 111

110

0-cube 1-cube 2-cube 3-cube

Proof 5.3 The n-cube has 2n vertices and n2n−1 edges.

There are 2n vertices because there are 2n binary strings.

For each string s of length n, there are exactly n strings that differ from s in exactly one
position. So each vertex of the n-cube has degree n. By the Handshake Theorem,

2|E| =
∑
v∈V

deg(v)

2|E| = |V |n
2|E| = n2n

|E| = n2n−1

In general, for a d-regular graph G, we have

2|E| =
∑
v∈V

deg(v)

2|E| = d|V |

|E| = d|V |
2

The n-cube can be constructed recursively from the (n− 1)-cube by taking two copies of the
(n− 1)-cube and joining pairs of corresponding vertices with an edge.

Proof 5.4 The n-cube is bipartite for all n.

Given a string with an even number of 1s, every neighbour will have an odd number of 1s.
Therefore ({strings of length n with an even number of 1s}, {strings of length n with an odd
number of 1s}) is a bipartition of the n-cube for any n.

End of
midterm
material
←
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5.7 Subgraph

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) where V ′ ⊆ V and E ′ ⊆ E.
Essentially, it is a graph obtained by removed any number of edges or vertices from G.

A subgraph G′ = (V ′, E ′) of G = (V,E) is a spanning subgraph of G if V ′ = V .

Example 5.5

G

a

dc

f

b

e

Original Graph

H1

a

dc

f

b

e

Subgraph of G

H2
dc

b

e
Subgraph of G

H3

a

dc

f

b

Not a subgraph of G. It is not a graph due to edges to
a nonexisting vertex.

H4

a

dc

1

b

e

Not a subgraph of G. Contains 1 ∈ V ′ but 1 6∈ V and
(a, e) ∈ E ′ but (a, e) 6∈ E.

5.8 Walk

A walk of a graph G is an alternating series of vertices and edges v0, e1, v1, e2, ..., vk−1, ek, vk
so that v0, v1, ..., vk ∈ V and each ei is an edge of G from vi−1 to vi. The length of this walk
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is k, or the number of edges.

If v0, v1, ..., vk are distinct, the walk is also a path.

If v0, v1, ...vk is a walk and v0 = vk, then the walk is closed.

If v0, v1, ..., vk is a closed walk and v0, v1, ..., vk−1 are distinct, then the walk is a cycle.

A cycle that contains every vertex of a graph G is a Hamilton cycle. A graph with a
Hamilton Cycle is Hamiltonian.

To specify a walk (or path) we often just list its vertices.

Walk Path Closed Walk

Proof 5.5 If there is a walk from x to y in G, then there is also a path.

Let x = v0, v1, ..., vk = y be a shortest walk from x to y in G.

We argue that this walk is actually a path. Suppose it is not a path. Then there exists i, j
such that 0 ≤ i < j ≤ k and vi = vj.

But then v0, v1, ..., vi, vj+1, vj+2, ..., vk is a walk from x to y of length k − j + i < k. This
contradicts the fact that the walk was as short as possible.

Proof 5.6 If there is a path from x to y and a path from y to z in a graph G, then there is
a path from x to z in G.

Let x = v0, v1, ..., vk = y and y = w0, w1, ...wl = z be paths from x to y and y to z respectively.
Now x = v0, v1, ...vk = y = w0, w1, ..., wl = z is a walk from x to z. By what we proved
above, there is a path from x to z.

Proof 5.7 If G is a graph and every vertex has degree at least 2, then G has a cycle.

Let v0, v1, ..., vk be a longest path in G. Since the path is longest, every number of vk is in
{v0, v1, ..., vk−1}. Since deg(vk) ≥ 2, there must be some 0 ≤ i ≤ k − 2 so that vi is adjacent
to vk (if not then the path described is not the longest).

Now vi, vi+1, ..., vk, vi is a cycle.
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v1 v2 v3 v4 v5 v6

v7

longer path

Theorem 5.4 (Dirac 1952) If a graph G has n ≥ 3 vertices and every vertex of G has
degree ≥ n

2
, then G has a Hamilton cycle.

Proof 5.8 Let v0, v1, ..., vk be a longest path of G.

Claim 1: There is a cycle of G whose vertices are v0, v1, ..., vk (in some order).

By maximality of the path, every neighbour of v0 and every neighbour of vk lies in the path.
Since v0 and vk each have degree ≥ n

2
, we can find a neighbour vl of vk so that vl+1 is a

neighbour of v0. Then v0, v1, ..., vl, vk, vk−1, ..., vl+1, v0 is a cycle.

Claim 2: Every vertex of G is in {v0, ..., vk}.
Since {v0, v1, ..., vk} contains v0 and all its neighbours, |{v0, ..., vk}| ≥ n

2
+ 1. If there is some

w ∈ V such that w 6∈ {v0, ..., vk} then since deg(w) > n
2
, w has some neighbour in {v0, ..., vk}.

But now {v0, ..., vk, w} contains a path of length k + 1, contradicting the maximality of the
original path.

5.9 Connected

A graph G is connected if for all vertices x and y, G contains a walk (or path) from x to y.

Connected Disconnected

Proof 5.9 If x is a vertex of a graph G, and for all vertices y of G, there is a path from x
to y, then G is connected. (Note that this is a weaker statement than our definition).

Let u, v be vertices of G. There is a walk from u to x and a walk from x to v, so there is a
walk from u to v. Therefore, G is connected.

Which graphs are connected?

• Complete graphs

• Complete bipartite graphs are connected unless one side has no vertices (eg. K0,3)
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• Cycles

• Cubes

A component of a graph G is a maximal connected subgraph of G. That is, a connected
subgraph H of G such that no connected subgraph H ′ of G has H as a proper subgraph.

5.10 Cut

Let (A,B) be a partition of the vertex set of a graph G (A ∪ B = V and A ∩ B = ∅). The
cut induced by (A,B) denotes the set of edges with one end in A and the other in B.

A B

If the cut induced by (A,B) is the entire edge set, then (A,B) is a bipartition so the graph
is bipartite. If A,B 6= ∅ but the cut induced by (A,B) is empty, then graph is disconnected.

Theorem 5.5 Let G be a graph. G is connected if and only if there does not exist a partition
(A,B) of V such that A,B 6= ∅ and the cut induced by (A,B) is empty

Proof 5.10 Suppose that G is connected, but there exists a partition (A,B) of V inducing
an empty cut with A 6= ∅ and B 6= ∅.

Let u ∈ A, v ∈ B. By connectedness, G contains a path u = u0, u1, ..., uk = v. Note that
u0 ∈ A, vk ∈ B. Let 0 ≤ i < k be maximal such that ui ∈ A. By maximality, ui+1 ∈ B, so
G contains an edge from A to B. This is a contradiction.

Conversely, suppose that G is disconnected. Let C be a component of G. Let VC be the set
of vertices in C. Since C is connected and G is not, we know that VC ( V and VC 6= ∅
so (VC , V \ VC) is a partition of V into nonempty parts. Since C is a maximal connected
subgraph, there is no edge from a vertex in VC to one in V \ VC .

28



Theorem 5.6 (Chvatal 1972)

If G is a graph whose vertices have degrees d1 ≤ d2 ≤ ds ≤ ... ≤ dn and for each i ≤ n
2
,

either di > i or dn−i ≥ n− i, then G is Hamiltonian.

For k ∈ N, a graph is k-connected if for every pair of vertices u, v there are k internally
disjoint paths from u to v.

Tait Conjecture: Every 3-connected graph that is planar is Hamiltonian.

The Tutte graph is a planar 3-connected graph but is not Hamiltonian.

Theorem 5.7 (Tutte)

Every 4-connected planar graph is Hamiltonian.

5.11 Euler Tour

Inspired by the problem, “Can we walk around Konigsberg, crossing each bridge once, and
returning to the start?”
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An Euler tour in a graph is a closed walk containing each edge exactly once. A graph
containing an Euler toupr is Eulerian.

Theorem 5.8 If G has an Euler tour, then every vertex of G has even degrees.

Proof 5.11 Let v0, e1, v1, e2, ..., vk−1, ek, vk = v0 be an Euler tour.

Let v be a vertex of G. Each occurence of v in the sequence v0, v1, ..., vk−1 has an edge both
before and after it in the tour (where we consider ek to be before v0). Since the tour includes
each edge exactly once, this means that every such v has even degree. �

Theorem 5.9 If G is a connected graph in which every vertex has even degree, then G has
an Euler Tour.

Proof 5.12 The theorem is trivial if there are no edges. Let m > 0 and suppose inducitvely
that the result holds for all graphs on < m edges.

Let G be a connected graph with m edges in which every vertex has an even degree. Let
v0, e1, v1, v2, ..., vk−1, ek, vk = v0 be a closed walk of G with as many edges as possible. Let
F = {e1, e2, ..., ek}.
Since every vertex has even degree and G is connected, every vertex has degree ≥ 2 so G
has a cycle (5.7). Therefore F contains at least as many edges as the cycle so F 6= ∅. If
F = E, then the graph has an Euler Tour.

Then consider when F 6= E. Let H = (V,E \ F ) be the subraph of G formed by removing
all edges in F . Since the subgraph (V, F ) is Eulerian, every vertex is incident with an even
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number of edges in F , so removing F gives a graph in which every vertex has even degree.
Note since F 6= E, that H has > 1 edge. Let C be a component of H that contains an edge.

Now C is connected, has < m edges and every vertex has an even degree. So by the inductive
hypothesis, C has an Euler Tour w0, f1, w1, f2, ..., fl, wl = w0. Since G is connected, there is
a vertex x of C incident with an edge in F . Now we can adjoin the walks v0, e1, v1, ..., ek, vk
and w0, f1, w1, ..., wl at their common vertex x to create a closed walk not repeating edges
in G. Such a walk is longer than our original one which is a contradiction. �

5.12 Bridges

An edge e is a bridge of a graph G if the graph G − e has more components than G. If
G = (V,E) then G− e is the graph (V,E \ {e}).

Theorem 5.10 e = uv is a bridge of a graph G iff u and v are in difference components of
G− e.

Theorem 5.11 An edge e = uv is a bridge of a graph G iff it is not contained in a cycle of
G.

Proof 5.13 Suppose e is contained in a cycle C. Then the edges in C − e form a path from
u to v in G − e so u and v are in the same component of G − e. Then by 5.10, e is not a
bridge.

All of these implications work in reverse so we can prove the converse in a similar manner.
�

Proof 5.14 If x and y are vertices of a connected graph G with no bridge, then G contains
two edge-disjoint paths from x to y.

Let x = v0, v1, ..., vn = y be a path from x to y in G. Let k ∈ {0, 1, ..., n} be maximal so that
G contains two edge disjoin paths from x to vk. If vk = vn, the theorem holds so suppose
k < n. Let P, P ′ be edge-disjoint paths from x to vk. The edge vkvk+1 is not a bridge so
there is some path Q′ from vk+1 to vk that does not contain the edge vkvk+1.

31



Let w be the first vertex of Q′ that is contained in P ∪ P ′ and let Q be the subpath of Q′

from vk+1 to w. Now the edges in P, P ′, Q and {vkvk+1} contain edge-disjoin paths from x
to vk+1 contradicting the maximality of k.

x = v0

vk vk+1 vn = y

5.13 Trees

A tree is a connected graph with no cycles (acyclic graph).

A leaf of a tree is a degree-1 vertex.

Tree Tree Cyclic

Proof 5.15 A connected graph G is a tree iff every edge is a bridge.

We saw in 5.11 that an edge is a bridge iff it is contained in no cycle. This result follows. �

Proof 5.16 Every tree on ≥ 2 vertices has ≥ 2 leaves.

Let v0, v1, ..., vk be a longest path. By maximality, every neighbour of v0 or vk is in the path.
By acylicity, v0 and vk have only neighbours v1, vk−1 respectively. So deg(v0) = deg(vk) = 1.
Then v0, vk are leaves. �

Proof 5.17 If T is a tree on n vertices, then T has n− 1 edges.

Trivial if n = 1. Suppose that the statement holds for every tree on k vertices for some
k > 1. Let T be a tree on k + 1 vertices. Let v be a leaf of T and let T ′ be the graph
obtained by removing v and a single incident edge from T (by 5.16).

T ′ is acyclic since T is acyclic. If x, y are vertices of T ′, then by connectedness of T , there
is a path of T from x to y. Since deg(v) = 1 this path does not contain v so it is also a
path of T ′. Therefore T ′ is connected and is a tree. T ′ has k vertices so it has k − 1 edges.
Therefore T has k edges as required. �
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Proof 5.18 Trees are bipartite.

Prove by removing a leaf and using induction. �

A spanning tree of a connected graph G is a subgraph of G that is a tree with the same
vertex set as G.

Proof 5.19 Every connected graph has a spanning tree.

Let G = (V,E) be a connected graph. Let F be a minimal subset of E so that the graph
H = (V, F ) is connected.

Since F is minimal, the graph H − e is disconnected for every e ∈ F , so every edge of H is
a bridge. Thus H is a gree so it is a spanning tree. �

Proof 5.20 A graph G is bipartite iff it contains no odd cycle.

We may assume that G is connected. If not, then consider each component individually. Let
T be a spanning tree of G. Suppose G has no odd cycles. We know trees are bipartite. Let
(A,B) be a bipartition of T .

We’ll show that (A,B) is also a bipartition of G. Suppose otherwise. Let x, y be adjacent
vertices of G that are both in A or both in B. Let x = u0, ..., uk = y be a path from x to y
in T .

Since each edge of T has an end in A and an end in B, vertices in this path alternate between
A and B. The ends are in the same set, so the length k is even. x = u0, u1, ..., uk = y = x is
an odd cycle of G, a contradiction. We proved the converse earlier in Proof 5.2. �

5.14 Planar Graph

A drawing of a graph G is a subset of the plane such that every vertex corresponds to a
distinct point, every edge corresponds to an open arc and the closure of each edge is exactly
its endpoints.

K5 is not planar Planar embedding of K4
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We we draw any graph in the plane such that edges only meet at vertices?

A graph G is planar if there is a drawing of G in the plane so that every vertex B is mapped
to a distinct point and the intersections of the edges are disjoint. Such a drawing is called a
planar embedding of G or a planar map.

Note if G is disconnected then G is planar iff every component of G is planar.

Theorem 5.12 (Fary’s Theorem) If G is planar then G can be embedded in the plane using
only straight lines.

If G is embedded in the plane P , the closures of the connected components of P \G are the
faces of the embedding. The unbounded face of an embedding is called the outer face.

The subgraph of G formed by the vertices and edges in the bounding of F is the boundary
of F .

G Boundary of f1

A vertex or edge of G in the boundary of F is incident with F . As we “walk” along the
boundary of F we set a closed walk in G. Such a walk is the boundary walk of F denoted
WF .

The degree of F is the length of WF (number of edges in WF ).

Any edge e appears twice in the set of boundary walks for faces of G since e is part of the
boundary of two faces (could be the same face twice).

Given G embedded in the plane, the bridges of G are exactly the edges that appear twice in
some face boundary walk.

Proof 5.21 All trees T are planar.

In any embedding of T in the plane, we have exactly one face. And any edge of T is contained
in the boundary walk twice. So deg(F ) = 2|E(T )| = 2|V (T )| − 2.

Theorem 5.13 (Handshake Theorem for Faces)
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If we have a planar embedding of a connected graph G with faces F1, F2, ..., Fk, then

k∑
i=1

deg(Fi) = 2|E(G)|

Theorem 5.14 (Euler’s Formula)

Let G be a connected graph with v vertices and e edges. If G has an embedding in the plane
with f faces, then

v − e+ f = 2

Proof 5.22 For a connected graph G with v vertices, the minimum number of edges in G
is v − 1 = e when G is a tree. Any embedding of a tree in the plane has one face. Then

v − e+ f = v − (v − 1) + 1 = 2

Suppose the claim is true for graphs on v vertices and < e edges (with e ≥ v). Since e ≥ v,
G is not a tree and there is some edge of G that is not a bridge.

Suppose {a, b} is a non-bridge edge of G. Consider H = G \ {a, b}. H has v vertices, e− 1
edges and H is connected. We showed earlier that an edge separates two faces and if the
edge is not a bridge, then the two faces are different. Then by removing the edge, we join
the two faces. So H has f − 1 faces.

Then by the inductive hypothesis

v − e+ f = 2

v − (e− 1) + (f − 1) = 2

as required. �

5.14.1 Stereographic Projection
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Any drawing on the plane can be converted to a drawing on a sphere via a stereographic
projection. We’ll have the sphere tangent to the plane at point A with point B antipodal to
A on the sphere. Then any point x′ on the sphere other than B can be mapped to a point
x on the plane. If join B and x′ with a line, we can have x be the intersection between the
plane and the line.

Then a sphere minus a single point is equivalent to a plane. Our point B on the sphere
cannot be mapped to a point on the plane and is a point on the plane at “infinite distance”.

Theorem 5.15 A graph is planar if and only if it can be drawn on a sphere.

5.14.2 Platonic Graphs

A fullerene is a planar 3-regular graph with an embedding containing only degree 5 or 6
faces.

Proof 5.23 All fullerenes have exactly 12 degree 5 faces.

Let f5 be the number of degree 5 faces and f6 be the number of degree 6 faces. Then
f = f5 + f6 by the definition of a fullerene.

By Euler’s formula, v − e + f5 + f6 = 2. Theorem 5.13 gives 5f5 + 6f6 = 2e. Then since
a fullerene is 3-regular and by the Handshake Theorem we have v − 3

2
v + f5 + f6 = 2 and

5f5 + 6f6 = 3v. Rearranging and equating f6 in each equation gives

3v − 5f5

6
= 2 +

1

2
v − f5

f5 = 12

�

A graph is platonic if it is d-regular (with d ≥ 3) and has an embedding in the plane where
all faces have degree d∗ with d∗ ≥ 3.
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The 5 platonic graphs.

Theorem 5.16 There are exactly 5 platonic graphs.

Proof 5.24 A platonic graph G has (d, d∗) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}.
Since G is d-regular and all faces have degree d∗,

dv = 2e

v =
2e

d
d∗f = 2e

f =
2e

d∗

By Euler’s formula,

2e

d
− e+

2e

d∗
= 2

2

d
+

2

d∗
=

2

e
+ 1
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For any e, 1 + 2
e
> 1.

Then if d ≥ 4 and d∗ ≥ 4, then 2
d

+ 2
d∗
≤ 1. If d = 3 and d∗ ≥ 6, then 2

d
+ 2

d∗
≤ 1. This is a

contradiction. �

Proof 5.25 We’ll prove that there are 5 platonic graphs.

If G is platonic with vertex degree d and face degree d∗,

e =
2dd∗

2d+ 2d∗ − dd∗

This can be shown using Euler’s formula and that v = 2e
d

and f = 2e
d∗

.

So for each (d, d∗) we have v, e, f as determined. Each tuple gives one platonic graph.

Proof 5.26 If G is connected and not a tree, then the boundary of every face in a planar
embedding of G contains a cycle.

Since G has a cycle, it has more than one face. Therefore, every face f is adjacent to at least
one other face g.

Let e = v0v1 be an edge that is incident with both f and g. Let H be the component in the
boundary graph of face f containing the edge e1. Let

Wf = (v0, e1, v1, e2, v2, ..., vn−1, en−1, v0)

be the boundary walk of f . Since the edge e1 is incident with both f and g, it is contained
in Wf precisely once.

The edge e1 is not a bridge of H because (v1, e2, v2, ..., vn−1, en, v0) is a walk from v1 to v0 in
H − e1. Therefore H contains a cycle. �

To prove a graph is non-planar, we usually prove a property true for all planar graphs and
then show that a graph does not have this property.

Proof 5.27 If G is a connected planar graph with p ≥ 3 vertices and q edges, then q ≤ 3p−6.

If G is a tree, then the statement holds because q = p − 1. If G is not a tree, consider a
planar embedding of G with p vertices, q edges and r faces. By the Handshake theorem for
faces,

2q =
∑
f∈F

deg(f)

. Each face has degree ≥ 3 since the boundary of every face contains a cycle. Then

2q ≥ 3r

r ≤ 2

3
q

38



By Euler’s Formula,

2 = p− q + r

2 ≤ p− q +
2

3
q

2 ≤ p− 1

3
q

q ≤ 3p− 6

�

K5 has 10 edges and 5 vertices. 10 > 9 so it cannot be
planar.

This has 11 edges and 6 vertices. 11 ≤ 12 so it does not
fail our test (but we know it is non-planar since K5 is
non-planar).

Proof 5.28 If G is a connected planar graph that is not a tree with p vertices, q edges and
every cycle has length ≥ d, then q ≤ d

d−2
(p− 2).

Since every face boundary contains a cycle, deg(f) ≥ d for each face f . By handshaking,
2q =

∑
deg(f) ≥ dr so r ≤ 2

d
q.

By Euler’s formula

2 = p− q + r

2 ≤ p− q +
2

d
q

q(1− 2

d
) ≤ p− 2

So q ≤ d
d−2

(p− 2) �

Then K3,3 is non-planar since every cycle has length at least 4, it has 9 edges and 6 vertices.

Is the Petersen graph planar? We can remove some edges from it. Notice that the graph
below is homeomorphic to K3,3, which is non-planar. Then the Petersen graph is non planar
since it contains K3,3 which is non-planar.
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Petersen Graph Petersen Graph with edges removed Subdivision of K3,3

A subdivision of a graph G is a graph obtained by replacing each edge of G by a path of
length ≥ 1.

Theorem 5.17 If H is a subdivision of a graph G, then H is planar iff G is planar.

As a corollary, if H is a nonplanar graph and G is a graph containing a subdivision of H as
a subgraph, then G is nonplanar.

Theorem 5.18 (Kuratowski’s Theorem)

G is planar iff G contains no subdivision of K5 or K3,3 as a subgraph.

5.15 Graph Coloring

Let k ∈ N. A k-coloring of a graph G = (V,E) is a function from V to a set of size k
(whose elements are called colors) so that adjacent vertices are mapped to different colors
always.

A graph with a k-coloring is k-colorable.

G is bipartite iff G is 2-colorable. The complete graph Kn is n-colorable but not (n − 1)-
colorable. The cycle Cn is 2-colorable iff n is even and is 3-colorable if n is odd.

Theorem 5.19 (Four Colour Theorem)

Every planar graph is 4-colourable.

The proof for the Four Colour Theorem is hard to prove. We’ll prove the six-colour theorem
instead by first proving the following lemma.

Proof 5.29 Every planar graph has a vertex of degree ≤ 5.
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Let G = (V,E) be a planar graph. We know that |E| ≤ 3|V | − 6 by Proof 5.27. The
handshake theorem shows that∑

v∈V

deg(v) = 2|E|∑
v∈V deg(v)

|V |
=

2|E|
|V |∑

v∈V deg(v)

|V |
≤ 2(3|V | − 6)

|V |

∑
v∈V deg(v)

|V |
≤ 6− 12

|V |

Then the average degree is ≤ 6− 12
|V | < 6 so G has a vertex of degree ≤ 5. �

Proof 5.30 Prove the six-colour theorem by induction on number of vertices. If G has ≤ 6
vertices, it is trivial. Suppose for n ≥ 6, the theorem holds for every planar graph on n
vertices. Let G′ be a planar graph on n+ 1 vertices.

Let v be a vertex of degree ≤ 5 by Proof 5.29. Inductively, G − v has a 6-colouring. Some
colour is not used by any neighbour of v since it has less than 5 adjacent vertices. Assigning
this colour to v gives a 6-colouring of G. �

G− v

v

There exists a v in a planar graph with degree ≤ 5.

5.15.1 Contraction

If e = xy is an edge of a graph G = (V,E) then G/e denotes the graph with vertex set
(V \ {x, y}) ∪ {z} where z is a new vertex not in V and edge set {uv : uv ∈ E and
{u, v} ∩ {x, y} = ∅} ∪ {wz : wx ∈ E or wy ∈ E,w 6∈ {x, y}}.
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x y
e

z

G G/e

Note that the contraction of a planar graph is also planar.

Theorem 5.20 Every planar graph is 5-colourable.

Proof 5.31 We’ll prove by induction on number of vertices. It is trivial if |V | ≤ 5. Suppose
the result is true for every graph on ≤ n vertices where n ≥ 5. Let G be a graph on n + 1
vertices. Let v be a vertex of G of degree ≤ 5.

Consider the case when deg(v) ≤ 4. Inductively, G−v has a 5-colouring. Some colour is not
used by any neighbour of v in this colouring. Assigning that colour to v gives a 5-colouring
of G.

Now consider when deg(v) = 5. G has no K5 subgraph since it is planar. Then there are
neighbours x, y of v that are nonadjacent in G. Let e = xv, f = yv,H = G/e/f . H is planar
and less vertices than G so it has a 5-colouring. Suppose that the vertex z to which x, y, v
are identified is assigned colour c in this colouring of H.

Now assigning c to x and y and colouring every vertex in V \ {x, y, v} according to the
colour it receives in H gives a colouring of G − v in which x and y both have the same
colour. Now the neighbours of v use ≤ 4 colours in this colouring of G− v so we extending
it to a 5-colouring of G as before. �

v

x

y

vz v

x

y

G Colouring of H Colouring of G

We can show the Petersen graph is nonplanar using contractions.
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e1

e2

e3

e4

e5

P P/{e1, e2, e3, e4, e5} = K5

The deletion of an edge e in a graph G written G \ e is the graph obtained by removing e
from G. It can also be written G− e.

Theorem 5.21 Kuratowski’s Theorem (Minor Version)

G is planar iff neither K5 nor K3,3 can be obtained from G by contracting/deleting edges and
removing vertices.

5.15.2 Planar Dual

Let G be a connected planar embedding of a graph. The planar dual of G is the graph G∗

such that the set of vertices of G∗ is the set of faces of G and two vertices of G∗ are joined
by an edge iff the corresponding faces are adjacent in G.

1. G∗ has a drawing on top of G so that each edge of G∗ crosses exactly one edge of G
and each vertex of G∗ is drawn inside its corresponding face.

2. Each edge of G∗ corresponds naturally to a unique edge of G. In particular, G and G∗

have the same number of edges.

3. The faces of G∗ correspond naturally to vertices of G.

4. G∗∗ = G if G (requires connectedness of G)
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5. (G/e)∗ = G ∗ \e and (G \ e)∗ = G∗/e

6. G∗ may have multiple edges or loops when G does not.

7. Different embeddings of G may have nonisomorphic duals (see graphs above)

8. Platonic graphs come in dual pairs.

5.16 Matchings and Covers

Given a graph G = (V,E), a matching of G is a set M ⊆ E so that each vertex of G is
incident with at most one edge in M .

A vertex incident with an edge of M is saturated. If a vertex is not incident with an edge
it is unsaturated.

If every vertex is saturated, the M is a perfect matching.

v

Edges in the matching and
saturated vertices are in red

Not a matching since there are
two incident edges to v

If M is a matching of a graph G, a path v0, v1, ..., vk of G is an M -alternating path if
either vivi+1 ∈M iff i is even or vivi+1 ∈M iff i is odd.

If v0v1 6∈ M and vk−1vk 6∈ M and v0, vk are unsaturated then the M -alternating path is an
augmenting path. Note that every augmenting path has odd length.

Proof 5.32 If M is a matching of a graph G and M has an augmented path, then M is not
a maximum matching of G.

If v0, v1, ..., vk is an augmenting path, then (M\{v1v2, v3v4, ..., vk−2vk−1})∪{v0v1, v2v3, ..., vk−1vk}
is a matching of G of size |M |+ 1. So M is not a maximal matching. �

A cover of a graph G = (V,E) is a set C ⊆ V so that every edge of G is incident with a
vertex in C.

Note that the vertex set V is trivially a cover. In a bipartite graph with bipartition (A,B),
both A and B are covers.
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Proof 5.33 If M is a matching of G and C is a cover of G, then |M | ≤ |C|.
Since C is a cover, it contains at least one end from each edge in M . The ends of these edges
are all distinct so |C| ≥ |M |. �

Proof 5.34 If M is a matching and C is a cover of G, and |M | = |C| then M is a maximal
matching and C is a minimal cover.

By the previous proof, every matching M ′ has size |M ′| ≤ |C| = |M | so M is a maximal
matching. Similarly, every cover C ′ has size |C ′| ≥ |M | = |C| so C ′ is a minimal cover. �

Note that there exists graph G such that |M | 6= |C| for a maximal matching M of G and
minimal cover C of G.

Maximal matching in red and minimal cover in blue.

Let v(G) denote the size of a maximal matching of G and τ(G) denote the size of a minimal
cover.

Theorem 5.22 (Konig’s Theorem)

In a bipartite graph, the maximum size of a matching is equal to the minimum size of a
cover.

Proof 5.35 Of Konig’s Theorem

The X-Y Construction: Let G be a bipartite graph with bipartition (A,B). Let M be a
matching of G.

Let X0 be the set of unsaturated vertices in A. Let Z be the set of all vertices v of G so that
there is an alternating path from some x ∈ X0 to v. Let X = Z ∩ A, Y = Z ∩B.

For each v ∈ Z, let P (v) be an alternating path from som x ∈ X0 to v. Note that since G
is bipartite and all vertices in X0 are in A,

1. If v ∈ X then P (v) has even length and its last edge is in M since v ∈ A

2. If v ∈ Y then P (v) has odd length and its last edge is not in M since v ∈ B.

Lemma: Given G,A,B,X, Y as above

a) There is no edge of G from X to B \ Y .
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b) C = (A \X) ∪ Y is a cover of G.

c) There is no edge in M from A \X to Y .

d) Let Y0 be the set of unsaturated vertices in Y . Then |M | = |C| − |Y0|.

e) For every y ∈ Y0, P (y) is an augmenting path.

Lemma A: If xv is an edge with x ∈ X, v ∈ B \ Y then P (x), x is an alternating path from
some vertex in X0 to v, contradicting v 6∈ Y .

Lemma B: Follows from Lemma A and the definition of a cover.

Lemma C: If yv is an edge in M and y ∈ Y, v ∈ A \X then P (y), v is an alternating path
from some vertex in X0 to v, contradicting v 6∈ X.

Lemma D: By Lemma A and C, every edge in M is either from X to Y or from A \X to
B\Y . There are |Y |−|Y0| edges of the first type and since every vertex in A\X is saturated,
there are |A\X| edges of the second type. So the size of |M | = |Y |−|Y0|+|A|\X| = |C|−|Y0|.
Lemma E: Follows because both ends are unsaturated by definition.

Proof of Konig’s Theorem: Let G be a bipartite graph with bipartition (A,B) and let
M be a max matching of G. Construct X,X0, Y, Y0 as above. Since M is maximum, it has
no augmenting paths. So by Lemma E, Y0 = ∅. Then C = (A \X) ∪ Y is a cover and by
by Lemma D, |M | = |C|. So M is a max matching and C is a min cover. �

Max Bipartite Matching Algorithm

Input: Bipartite graph G with bipartition (A,B)

Step 1: Let M be any matching of G (eg. ∅)

Step 2: Let X̂ be the set of unsaturated vertices in A and Ŷ = ∅

Step 2a: (Grow Ŷ ) For each vertex v ∈ B \ Ŷ that is adjacent to a vertex u ∈ X̂, add v to Ŷ
and let pr(v) = u. (pr stands for parent)

Step 2b: If Ŷ contains an unsaturated vertex y, then y, pr(y), pr(pr(y)),... is an augmenting
path. Use this path to make M bigger and repeat from 1.

Step 2c: If Step 2 added no new vertex to Ŷ , then M is a max matching and C = (A \ X̂)∪ Ŷ .
Return.

Step 3: (Grow X̂) For each vertex u ∈ A\ X̂ that is joined by an edge of M to a vertex v ∈ Ŷ ,
add u to X̂, set pr(u)=v. Goto 2.

Example 5.6 Example of algorithm.
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1. Start with X̂ = {1, 2}, Ŷ = ∅.

1 2 3 4 5

a b c d e

2. Grow Ŷ :

X̂ = {1, 2}, Ŷ = {b, e}, pr(b) = 1 and pr(e) = 2.

2b and 2c do not apply so continue to step 3.

3. Grow X̂:

X̂ = {1, 2, 3, 5}, Ŷ = {b, e}, pr(3) = b and pr(5) = e

4. Grow Ŷ :

X̂ = {1, 2, 3, 5}, Ŷ = {b, e, c, d}, pr(c) = 3 and pr(d) = 3.

c is unsaturated and c ∈ Ŷ so c, pr(c), pr(pr(c)), ... = c, 3, b, 1 is augmenting.

5. We use the path above to grow M . Set X̂ = {2} and Ŷ = ∅.

1 2 3 4 5

a b c d e

6. Grow Ŷ :

X̂ = {2}, Ŷ = {b, e}, pr(b) = 2 and pr(e) = 2.

2b and 2c do not apply.

7. Grow X̂:

X̂ = {2, 1, 5}, Ŷ = {b, e}, pr(1) = b and pr(5) = e.

8. Grow Ŷ :

X̂ = {2, 1, 5}, Ŷ = {b, e}.
2c applies so M is a max matching. Then A(\X̂) ∪ Ŷ = {3, 4, b, e} is a min cover.
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IF X is a set of vertices in a graph G, then the neighbourhood of X, denoted N(X) is the
set of vertices of G that are adjacent to a vertex in X.

Observe that if X is a set of vertices in a graph G with |N(X)| < |X| then G has no matching
saturating every vertex in X.

Theorem 5.23 (Hall’s Theorem)

Let G be a bipartite graph with bipartition (A,B). Then G has a matching saturating A iff
|N(A′)| ≥ |A′| for all A ⊆ A.

Proof 5.36 Clearly if there exists A′ ⊆ A with |N(A′)| < |A′| then G has no matching
saturating A.

Conversely suppose that |N(A′)| ≥ |A′| for all A′ ⊆ A. To show that there is a matching
saturating A, it suffices to show that A is a min cover (by Konig’s Theorem).

Let C be a cover of G. Consider A \ C. Because C is a cover, every neighbour of a vertex
in A \ C is in B ∩ C. So N(A \ C) ⊆ B ∩ C. Therefore |B ∩ C| ≥ |N(A \ C)| ≥ |A \ C| by
assumption. So |C| = |C ∩ A|+ |C ∩B| = |C ∩ A|+ |A \ C| = |A|. So A is a min cover.

Edge Colouring

A k-edge colouring of graph G is an assignment of a colour from a set of k colours to each
edge of G so that edges sharing an end get different colours.

3-edge colouring of K4

Theorem 5.24 For k > 0, every k-regular bipartite graph has a perfect matching.

Proof 5.37 Since the number of edges is k|A| = k|B| we have |A| = |B|.
By Hall’s theorem, for a perfect matching to exist we have to show that |N(A′)| ≥ |A′| for
all A′ ⊆ A. Let A′ ⊆ A. Let F be the set of edges from A′ to N(A′).

Every edge with one end in A′ is in F so |F | = k|A′|. Also every edge of F has one end in
N(A′), so |F | ≤ k|N(A′)|. Then k|A′| = |F | ≤ k|N(A′)| so |A′| ≤ |N(A′)|. Hall’s theorem
gives us the result. �

48


	Some Concepts
	Binomial Theorem
	Product of Polynomial
	Sum Lemma
	Product Lemma
	Negative Binomial Theorem

	Counting Combinations
	Intro using Fruit
	Sum Lemma
	Product Lemma
	Example Proving Binomial Theorem

	Example with Fruit
	Example of Change for $1
	Negative Binomial Theorem
	Compositions
	Restricted Compositions
	Small Parts
	Odd Parts
	Combinatorial Proof of Compositions of Size 1 and 2
	Combinatorial Proof of Odd Sized Compositions
	Relationship between Above Compositions


	Binary Strings
	Ambiguity
	Strings and Generating Series
	Recursive Decompositions

	Evaluating Coefficients of Generating Series
	Partial Fractions
	Solving Recurrences
	Binary Trees

	Graph Theory
	Definitions
	Regular Graphs
	Bipartite Graph
	Cycle
	Complete Graph
	Cube
	Subgraph
	Walk
	Connected
	Cut
	Euler Tour
	Bridges
	Trees
	Planar Graph
	Stereographic Projection
	Platonic Graphs

	Graph Coloring
	Contraction
	Planar Dual

	Matchings and Covers


